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ABSTRACT 
 
 
 

A mobile radio environment places fundamental limitations on the performance of 

wireless communication systems.  Most models developed to predict propagation path 

loss have been historically performed in a statistical approach.  These models are 

expensive to develop and do not offer the accuracy, computational advantages, and 

sufficiency as the parabolic equation (PE).  The goal of this thesis is to develop a 3D 

model based on PE for predicting propagation path loss in urban areas on flat and hilly 

terrains.  The PE method offers the computational advantages, where one can 

approximate the elliptic operator governing the true wave behavior by a much simpler 

parabolic operator that permits marching in range.  Moreover those all-important aspects 

of propagation such as reflection and diffraction are included automatically in the 

formulation.  Four test problems on flat terrain and two test problems on hilly terrain will 

be simulated.  For the flat terrain, the 3D PE model results will be compared with the 

two-ray, the four-ray, the UTD, and the numerical integration technique results.  For the 

hilly terrain, the results of the 3D PE model will be compared with the UTD and the 

numerical integration technique results. 
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EXECUTIVE SUMMARY 
 

A mobile radio environment places fundamental limitations on the performance of 

wireless communication systems.  Most models developed to predict the propagation path 

loss have been historically performed by statistical approach.  These models are often 

complicated and expensive to develop and do not offer the accuracy, computational 

advantages, and sufficiency such as the parabolic equation (PE) technique or a ray based 

technique.   

The aim of this thesis is to develop a 3D model based on PE for predicting the 

propagation path loss in urban areas on flat and hilly terrains.  The PE method offers the 

computational advantages, where one can approximate the elliptic operator governing the 

true wave behavior by a much simpler parabolic operator that permits marching in range.  

This method has the advantage that all-important aspects of propagation such as 

reflection and diffraction are included automatically in the formulation.  Two types of 

terrains are considered, the flat earth and the hilly terrain.  For the flat earth case, four test 

problems are examined.  We compare the results from these cases with the results 

available in open literature from the two-ray model, the four-ray model, the UTD, the 

theoretical model proposed by Lee, and the numerical integration technique presented by 

Bertoni.  For the hilly terrain case, two test problems are considered.  The results of these 

cases are compared with the results presented by Piazzi and Bertoni.   

For the flat earth, the first test problem is to simulate and determine the 

propagation factor F at the final range over flat earth without obstacles being placed 

between the transmitter and the receiver.    F is defined as the normalized field 

( ) ( ), , / . .y yH x y z H f s , where ( ). .yH f s  is the free-space magnetic field.  A 

transmitting antenna height of Ht = 30 m, and the operating frequency of 1 GHz is used.  

The results of the 3D PE model are compared with the two-ray model.  This is the 

simplest validation case we consider.   

The second test problem is to simulate and determine F with a single absorbing 

screen placed between the transmitter and the receiver that has a height Hk = 50 m and  a 
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width, Wk = 49.5 m.  The screen represents a building.  The transmitting antenna height is 

Ht = 60 m, and the operating frequency is 1 GHz.  We compare the results of the 3D PE 

model with the results of the four-ray model which considers reflection and diffraction in 

the vertical plane joining the transmitter and receiver.   

In the third test problem, nine absorbing screens of uniform heights, equal 

spacing, variable screen widths are placed between the transmitter and the receiver.  A 

transmitting antenna height of Ht = 10 m, and operating frequency of 1 GHz is used.  This 

test case is equivalent to the radiowave propagating over a row of houses in an urban 

area.  The three different screen widths of 50 m, 25 m, and 12.5 m are considered.  Each 

screen has a height of 10 m and is spaced 50 m from the previous one.  Their effects on 

the propagation factor F are studied.  The propagation factors are determined at the 

rooftops.  The results of the 3D PE model are compared with the UTD results presented 

by Andersen and the theoretical results proposed by Lee.   

The last test problem for the flat earth case involves 120 absorbing screens of 

uniform heights and equal spacing between the transmitter and the receiver.  These 

screens represent row of buildings or houses.  The transmitting antenna has a height of Ht 

= 125 m, and the operating frequency is 900 MHz.  The screens have the height, Hk = 20 

m, and the width, Wk = 50 m.  They are spaced 50 m apart.  The propagation factor is 

determined at the final range.  We compare the results of the 3D PE model with the 

results of the UTD method and the numerical integration technique presented by Bertoni.    

For the hilly terrain case, the first test problem involves a single rounded hill with 

multiple absorbing screens of uniform heights, equal spacing and variable screen widths.  

The three variable screen widths are 25 m, 50 m and 100 m.  The screen height Hk = 7 m, 

and the spacing of 50 m are maintained constant.  Their effects on the propagation factor 

F are studied.  The transmitting antenna height is Ht = 57 m, and the operating frequency 

is 900 MHz.  The field strengths are determined on the rooftops.  We compare the results 

of the 3D PE model with the results of the numerical integration technique proposed by 

Piazzi and Bertoni.   
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For the second test problem in this class, the propagation took place over two hills 

of sinusoidal shape with multiple absorbing screens of uniform heights, equal spacing, 

and variable screen widths.  The three variable screen widths are 25 m, 50 m and 100 m.  

A screen height Hk = 7 m, and spacing of 50 m is used.  Their effects on the propagation 

factor F are studied.  The transmitting antenna has a height of Ht = 57 m, and the 

operating frequency is 900 MHz.  Again, we compare the results of the 3D PE model 

with the results presented by Piazzi and Bertoni.   

Finally, the 3D model results based on PE for predicting propagation path loss in 

urban areas over flat and hilly terrains are simulated.  Six different test problems are 

considered.  We compare the results of the 3D PE model with the available results from 

the literature, and they show excellent agreement.  We also demonstrate that the 3D PE 

model can support both flat and hilly terrains with multiple absorbing screens of uniform 

heights, equal spacing, and variable screen widths. 
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I. INTRODUCTION  
 
 
 

A. BACKGROUND  

A typical mobile radio environment in an urban area for wireless communication 

systems has no direct line-of-sight path between the transmitter and the receiver.  The 

environment is so dynamic and the path between the transmitter and the receiver can vary 

drastically from simple line-of-sight to one that is severely obstructed by buildings, 

mountains, and trees.  Hence, the mobile radio environment places fundamental 

limitations on the performance of wireless communication systems.  Since the 

environment is extremely random, most analysis done on it has been historically 

performed in a statistical approach, often based on measurements made specifically for 

an intended communication system or spectrum allocation [Ref. 1]. 

Currently, there are large-scale propagation path loss models being utilized in 

commercial cellular communication systems in America, Europe, Asia, and around the 

world.  Some of these popular models include the Okumura model, the Hata model, and 

the COST-231-Walfish-Ikegami model [Ref. 2].  As previously mentioned, these models 

were developed by measurements and statistical analysis made specifically for frequency 

coverage between 150 MHz and 2 GHz, and are typically based on a certain city 

environment like Tokyo or New York. These models provide reasonable approximation 

for current cellular communication applications.  However, they are complicated and 

expensive to develop and do not offer the accuracy, computational advantages, and 

efficiency of models such as the parabolic equation (PE), ray methods, etc. 

Previously developed 2D parabolic equation based on the vertical plane method 

does not account for the lateral propagation of waves.  Consequently, the mean path loss 

is overestimated and the standard deviation of error tends to be rather high [Ref. 3].  

Therefore, a 3D PE formulation based on the split-step algorithm was developed and 

demonstrated for forward propagation around perfectly reflecting obstacles located on 

ground that includes the laterally propagating waves [Ref 4].  The 3D formulation is 

expected to substantially improve the accuracy relative to the 2D vertical plane method 

for the test problems.  The goal of this thesis is to develop a 3D model based on a scalar 



2 

parabolic equation for predicting propagation path loss in urban areas on flat earth and 

hilly terrains.  

B. RESEARCH DEFINITION 

Given an operating frequency f, the transmitting antenna height Ht and the 3-dB 

beam width, and the terrain profile, we want to calculate the field at a certain range from 

the transmitting antenna.  We use the parabolic equation (PE) method to determine the 

field at the desired location.  Although there are several computational techniques for 

predicting the field at a desired range from the transmitting antenna including the ray 

tracing approach, and the integral equation method etc., few offer the computational 

advantages of the parabolic equation (PE) method, where one can approximate the 

elliptic operator governing the true wave behavior by a much simpler parabolic operator 

that permits marching in range.  The PE method has the advantage that all-important 

aspects of propagation such as reflection and diffraction are included automatically in the 

formulation.  However, the penalty for employing the PE method is that it neglects back 

scattering [Ref. 5].  This assumption will not contribute any significant errors for the 

class of applications considered in this thesis since radiowaves predominantly propagate 

in the forward direction.  

We consider a vertically polarized current source ( )f z  that produces only 

vertically polarized electric field component Ez or equivalently a circumferential 

magnetic field component.  We look at the y component of the magnetic field Hy because 

the depolarization is ignored.  Thus initial magnetic field ( )0, ,H y z  at the location x = 0 

is set up by the current source on a flat plane, and it is directly related to the current 

source density J
→

.  It is easier to relate the magnetic field to the current source [Ref. 3, 4].  

For this reason, we use the magnetic field in the 3D PE algorithm instead of electric field; 

however, the electric field and magnetic field in the far-zone are related via the medium 

impedance.  The field is then split into even and odd parts to ensure that there are no 

discontinuities at zero crossing which leads to erroneous results during numerical 

evaluation.  
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In the presence of vertical screens that are perpendicular to the preferred axis (x-

axis), we still ignore the depolarization.  These screens represent a row of buildings or 

houses in an urban area.  In this thesis, we assume that they are perfectly absorbing which 

means that all incident fields on them are zeroed out.  Figure 1 illustrates how the 3D PE 

model algorithm handles the incident fields on the screens.  First, we determine the fields 

( ), ,H x y z  in the absence of the screens and then make local adjustments to them.  After 

making the adjustments, the field ( ), ,H x y z+ continues to march in range where the 

superscript + indicates the fields immediately after the screen.  This is then repeated till 

the desired receiver location is reached. 

 

 

Figure 1. Fields Incident on a Perfectly Absorbing Screen. 

Therefore, this work will attempt to design a more accurate large-scale 

propagation path loss model based on the scalar 3D parabolic equation (PE) over the 

frequency band of 300 MHz to 10 GHz.  The algorithm will predict the lateral and 

vertical wave propagation in an urban area that is comprised of vertical buildings with 

arbitrary cross section and perfectly absorbing surfaces on flat and hilly terrains.  The 3D 

PE algorithm also includes the log-normal shadowing effects.  We will compare the 3D 

Z

Y

Original Field Null Field
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PE results to the two-ray model [Ref. 2], four-ray model [Ref. 2], the results given by 

Andersen [Ref. 6] obtained from the uniform theory of diffraction (UTD) method, the 

theoretical results given by Lee [Ref. 7], and the numerical results obtained by Piazzi and 

Bertoni [Refs. 8-10].  The 3D PE algorithm is implemented in MatLab.   

In Chapter II we provide detailed discussions on the numerical evaluation of the 

3D parabolic equation and the MatLab implementation.  The current source has vertical 

extent along the z-axis and has a Gaussian distribution.  The source standard deviation, 

zσ , is chosen to produce the required transmitting antenna 3 dB elevation beam width, 

elΘ .  A detailed discussion on the current source and its relationship to the magnetic field 

is also given in this chapter.  

In Chapter III and IV, we discuss our results and comparison efforts in detail.  We 

compare the 3D parabolic equation (PE) results with the results reported in the literature.  

In Chapter III, first, we examine a flat earth and perfectly reflecting ground.  The results 

of the 3D PE model of this case are compared with the results of the two-ray model.  

Then we introduce single and multiple perfectly absorbing screens of uniform heights and 

equal spacing between the transmitter and the receiver over a flat earth and non-perfectly 

reflecting ground.  These absorbing screens represent row of buildings of arbitrary 

widths.  The effects of finite screen widths on simulation are also examined.   

In Chapter IV, we introduce a rounded hill and two hills of sinusoidal shape with 

multiple absorbing screens the uniform heights and equal spacing between the transmitter 

and the receiver.  These scenarios are representative of well built-up urban areas.  In both 

cases, we also examine the effects of finite screen widths versus the infinitely long screen 

widths on the simulation results.  Results from these cases are compared with the results 

presented by Piazzi and Bertoni.  Chapter V provides the conclusions and 

recommendations.  All MatLab codes are listed in the Appendices.   
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II. NUMERICAL EVALUATION OF 3D PARABOLIC 
EQUATION 

 
 

A detailed method for evaluating the 3D parabolic equation (PE) numerically is 

presented in this chapter.  First the 3D PE model algorithm flow diagram is presented in 

Section A.  Then the initial current source and its characteristics are discussed in Section 

B.  This is followed in Section C by a detailed discussion on how the magnetic field is 

related to the current source.  A Hanning window is used throughout the algorithm to 

contain the fields both in spatial and wavenumber domains before taking 2D (Ny x Nz) 

Fourier transforms (2FFT’s) or 2D inverse Fourier transforms (IFFT’s).  The Hanning 

window is discussed in detail in Section D.  Brief descriptions of the auxiliary parameters 

are provided in Section E. 

In the parabolic equation the fields are coupled causally from one range to the 

next.  There is no path for waves to return information from obstacles located ahead of 

the receiver.  The initial fields are set up by the current source on an impedance plane.  

Presence of a vertical screen perpendicular to the preferred axis (x-axis) is handled by 

first determining the fields in the absence of the screen and then making local 

adjustments to them.  This process is then repeated till the desired receiver location is 

reached.   

Figure 2 illustrates the geometry of the scalar 3D PE model approach.  To find the 

field over an impedance plane at a particular range, x + ∆x, given the field at a previous 

range, x, the latter is first decomposed into a spectrum of plane waves traveling in the 

positive x-direction.  Each plane wave is then propagated to the new range using the 

appropriate propagator.  The plane waves at the new range are then added to compose the 

field at x + ∆x.  The various spectral decompositions are carried out using 2D Fourier 

transforms (2FFTs) in the y-z plane.  Furthermore, the magnetic field can be defined in 

terms of odd and even parts to ensure that there are no discontinuities at zero crossing 

which leads to erroneous results during the 2D Fourier transform (FFT) computation.   In 

this thesis, the current source is assumed to be along the positive z-direction, and the 

antenna is vertically polarized.  Over flat plane, the only non-zero field components are 
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Ez , Eρ, and Hφ.  Where ρ, z, φ are the standard cylindrical coordinates, and φ is measured 

from the x-axis.  We ignore depolarization and continue this assumption to hold in the 

presence of the screens.  Thus the vertically polarized current source ( )f z  produces 

only vertically polarized electric field component Ez or equivalently a circumferential 

magnetic field component.  In this thesis, we choose to use the y component of the 

magnetic field Hy because the antenna depolarization is ignored.   

 

Figure 2. Geometry of the Scalar 3D PE Model [From: Ref. 11]. 

A.   3D PARABOLIC EQUATION ALGORITHM 

This section provides an overall view of the 3D PE model algorithm flow diagram 

as illustrated by Figure 3.  The method of implementing the algorithm in MatLab is also 

presented.  Obstacles’ placements and terrains are also discussed in the context of 

simulation.  Additional details are provided in the subsequent sections.  
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Figure 3. 3D PE Numerical Evaluation Flow Diagram. 

The initial magnetic field ( )0, ,H y z  is assumed to be generated by the current 

source on a flat plane.  The Gaussian current source along the z-axis gives rise to a 

~ ~ ~

|| ||
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circumferential magnetic field with a lateral component, ( ), ,yH x y z .  It is described in 

Section C.  The transformed magnetic field ( )
~

0 , ,y y zH k k+  provides the initial field for 

the beginning of the main loop of the algorithm as shown in Figure 3, where the tilde 

indicates the transformed.  When ( )
~

0 , ,y y zH k k+  is multiplied by the free-space 

propagator xik xe ∆ , the initial transformed field has marched from the previous location x 

to a new location x + ∆x and is given by equation (2.1).  The field is split into even and 

odd parts for numerical convenience.   

 ( )
( ) ( )

( ) ( )

~

||~

~
0||

1 1 , ,
2, ,

1 1 , ,
2

x

yez y z
ik x

y y z

yz y z

k H x k k
H x x k k e

k H x k k

+

∆

+

 
 + Γ   + ∆ =  

  + − Γ   

 (2.1) 

The quantity ( )|| zkΓ  is the reflection coefficient of a plane wave for parallel polarization. 

Then the magnetic field ( ), ,yH x y z  at a new location x + ∆x just right before the 

screen is found by double integrating equation (2.1) and is expressed by equation (2.2).   

( ) ( )
~ ( )

2

1, , , ,
4

y zi k z k z
yy y z y zH x y z H x x k k e dk dk

π

∞ ∞
+

−∞ −∞

= + ∆∫ ∫  (2.2) 

If we examine equation (2.2), it is basically a 2D inverse Fourier transform, (IFFT), of 

the left hand side of equation (2.1) with respect to ky and kz.  Then instead of evaluating 

equation (2.2) by complex double integrations, the 2D (Ny x Nz)  IFFT is used to evaluate 

it.  The equivalent MatLab expression to equation (2.2) is defined by equation (2.3).   

( )
( )

( ) ( )
~

2, , 2 , ,
2

y z
y y y z y z

k k
H x y z IFFT H x k k N N

π
∆ ∆  =  

 
. (2.3) 

Also, MatLab divides the results by Ny x Nz when it performs a 2D IFFT operation; 

therefore, the results are de-normalized by multiplying them by Ny x Nz.  The results are 

multiplied by a Hanning window in spatial domain to prevent aliasing effects.   
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At this point, after the magnetic field ( ), ,yH x y z  has been found just before the 

screen, the obstacles are introduced that represent buildings, houses, trees, etc. in the 

simulation.  In all the test problems, screens are used as obstacles and assumed to be 

perfectly absorbing.  These screens represent rows of buildings having height Hk and 

width Wk.  The Hk and Wk parameters are used to study the effects on the propagation 

factor and field strengths.   All incident fields on the screens are eliminated since they are 

perfectly absorbing.  The fields that propagate forward consist of the diffracted and the 

reflected waves.  The ( ), ,yH x y z+  indicates the field after adjusting for screens at 

location x.  Then the fields begin their march immediately after the screen.  Figure 4 

illustrates an example of a hilly terrain with multiple screens of uniform heights and 

equal spacing between the transmitter and the receiver.  The propagation factor F and the 

field strengths may be determined at each marching step as the fields propagate forward.  

The data are stored as an array.  

 

Figure 4. Hilly Terrain and Multiple Equal Height and Equally Spaced Screens. 

Once the magnetic field ( ), ,yH x y z , at a new location x, has been found, it may 

be expressed in terms of odd and even parts to ensure there are no discontinuities at zero 

crossing that cause erroneous results during the 2D Fourier transform (FFT) operations.  

The odd ( )0 , ,yH x y z  and even ( ), ,yeH x y z  fields are given as:   

Ht= 57 m

Tx

Hk=7 m

Wk

Hh= 50 m

DS = 50 m

Rh = 10000 m
Xh = 1000 m Xh = 1000 m

Y

X

Z

4000 m

Rx
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 ( )
( )

( )
, , 0

, ,
, , 0

y
yo

y

H x y z z
H x y z

H x y z z

 >= 
− − <

 (2.4) 

 ( )
( )
( )

, , 0
, ,

, , 0
y

ye
y

H x y z z
H x y z

H x y z z

 >= 
− <

 (2.5) 

The transformed quantities ( )
~

0 , ,y y zH x k k and ( )
~

, ,ye y zH x k k  are found by the 

following equations: 

 ( ) ( ) ( )~ ' '
0 0, , , ', ' ' 'y zi k y k z

y y z yH x k k H x y z e dy dz
∞ ∞ − +

−∞ −∞
= ∫ ∫  (2.6) 

 ( ) ( ) ( )~ ' ', , , ', ' ' 'y zi k y k z
ye y z yeH x k k H x y z e dy dz

∞ ∞ − +

−∞ −∞
= ∫ ∫  (2.7) 

Equations (2.6) and (2.7) are essentially the 2D Fourier transforms, 2D FFT’s, of 

( )0 , ,yH x y z  and ( ), ,yeH x y z  with respect to y and z.  The equivalent Matlab operations 

of equations (2.6) and (2.7) are defined as:  

 ( ) ( )( )
~

0 0, , 2 , ,y y z yH x k k y zFFT H x y z= ∆ ∆  (2.8) 

 ( ) ( )( )
~

, , 2 , ,ye y z yeH x k k y zFFT H x y z= ∆ ∆  (2.9) 

  Next the odd and even transformed magnetic fields are multiplied by the 

Hanning window in frequency domain to prevent aliasing.  Then the odd transformed 

( )
~

0 , ,y y zH x k k is multiplied by a factor ( )||
1 1
2 zk − Γ  , and the even transformed 

( )
~

, ,ye y zH x k k  is multiplied by ( )||
1 1
2 zk + Γ  .  These fields are then combined to 

provide the newly transformed magnetic field immediately after the screen, i.e. 

( )
~

0 , ,y y zH k k+ .  The steps in the main loop as illustrated in Figure 3 are repeated until 

the desired receiver location is reached.  The propagation factor F at the final range is 
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defined as the normalized field ( ) ( ), , / . .y yH x y z H f s , where ( ). .yH f s  is the free-

space magnetic field and is defined as: 

 ( ) ( ) ( ) ( )( )
0~

0 0
1. . sin cos cos

4

ik R

y
eH f s ik g k

R
θ φ θ

π
= −  (2.10) 

where θ and φ are the angles in spherical coordinates, 1i = − , and ( )
~

zg k  defined by 

equation (2.20) is the vertical plane response of the current source.  R is a range between 

the transmitter and receiver, and k0 is the free space wave number.  R, ρ, θ, and φ are 

defined by the following equations:   

 ( )2 2
tR z H ρ= − +  (2.11) 

 2 2x yρ = +  (2.12) 

 1sin
R
ρθ −  =  

 
 (2.13) 

 1sin yφ
ρ

−  
=  

 
 (2.14) 

The current density and its characteristics are discussed in the next section. 

B. GAUSSIAN CURRENT SOURCE 

The fields are excited by a vertically polarized current source with a prescribed 

aperture distribution ( )f z .  We choose a Gaussian distribution current source to allow us 

to match the source standard deviation, zσ , to the transmitting antenna 3 dB elevation 

beam width, elΘ  [Ref. 3, 4].  It is also convenient to relate the magnetic field to the 

current source.  We consider a transmitting antenna at height z = Ht and the current 

source density J
→

as defined by equation (2.15).   

 ( ) ( )
^

0oJ z I l y f zδ
→

= −  (2.15) 

where 
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 ( ) ( )2 2/ 21
2

t zz H

z

f z e σ

σ π
− −=  (2.16) 

is a Gaussian current source with a standard deviation of zσ , oI l is a current moment  

[Ref. 11], and ( )0yδ −  is a dirac function.  Figure 5 shows the vertically polarized 

Gaussian current density function J
→

 placed over an impedance plane.  The current is 

assumed to be independent of y and has a peak at z = Ht.  zσ is its standard deviation and 

may be chosen from Table 1 to fit the required transmitting antenna 3 dB elevation beam 

width, elΘ [Ref. 3].  It may be observed that ( )2 2
tR z H ρ= − + is the direct distance 

from the source, 2 2x yρ = +  is the horizontal distance from the source, and θ and φ 

are angles in spherical coordinate defined by 1sin
R
ρθ −  =  

 
 and 1sin yφ

ρ
−  

=  
 

.  For the 

geometry shown, the only non-zero field components are Ez , Eρ, and Hφ.  

 

Figure 5.   Gaussian Density Current Source over an Impedance Plane. 

Ht z
R

Tx Rx

x

y

xd

ρρρρ
σσσσz

y
ψψψψ

J
→

φφφφ

θθθθ

Ez

Hy
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Figure 6 illustrates the Gaussian current source function f (z) with Ht = 10 m and 

zσ = λ.   We discuss the magnetic field in detail in the next section.   

elΘ , deg /zσ λ  

60 0.20

45 0.30 

30 0.45 

15 1.00 

10 1.52 

5 3.03 

 

Table 1. Transmitting Antenna Elevation Beam Width Versus zσ [From: Ref. 3]. 

Figure 6. Gaussian Current Source Distribution Function.  

zσ λ=
Ht

f(z)

Ζ 
(m

)
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The function ( )f z  can be written in terms of its odd and even functions, ( )of z  

and ( )ef z , respectively, to permit a more accurate computation of the Fourier transform 

in the vertical direction.  The odd and even extensions of ( )f z  are given in equations 

(2.17) and (2.18).   

 ( ) ( )
( )

0

0o

f z z
f z

f z z

 >= 
− − <

 (2.17) 

 ( ) ( )
( )

0

0e

f z z
f z

f z z

 >= 
− <

 (2.18) 

The functions ( )of z  and ( )ef z  are shown in Figures 7 and 8.  If we add the ( )of z  

and ( )ef z  together and divide by ½, we will get back the original function ( )f z .  

Hence, the function decomposition into its odd and even parts to facilitate computation is 

a valid one.   

Figure 7. Odd Part of ( )f z . 

zσ λ=

- Ht

fo(z)

Ζ 
(m

)

Ht

zσ λ=
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Figure 8. Even Part of ( )f z . 

We need to examine the Fourier transform of the current source density J
→

.  We 

shall use the transformed information to derive the initial transformed magnetic field in 

Section B.  Since J
→

 is independent of y, if we take the Fourier transform of equation 

(2.15) with respect to z, which is tantamount to taking the Fourier transform (FFT) of 

( )f z .  The FFT of ( )0yδ −  with respect to y is equal to 1.  Therefore, the Fourier 

transform of ( )f z  with respect to z is given below: 

 ( ) ( )2 2~ ~
/ 2z t z tz zik H ik Hk

z zf k e e g k eσ− −−= =  (2.19) 

where ( )
~

zg k  is defined as 

 ( ) 2 2~
/ 2z zk

zg k e σ−=  (2.20) 

- Ht

fe(z)

Ζ 
(m

)

Ht

zσ λ=

zσ λ=
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It is easy to see that  

 ( ) ( ) ( )
~ ~

2 cose z z z tf k g k k H=  (2.21) 

 ( ) ( ) ( )
~ ~

2 sino z z z tf k i g k k H= −  (2.22) 

C. MAGNETIC FIELDS 

In this section, we derive the initial transformed magnetic field ( )
~

, ,y y zH x k k  

from the transformed current source ( )
~

zf k .  The fields march in the transformed space, 

and the propagation factor or the field strength is determined in the physical space.  Then 

the basic 3D parabolic equation (PE) algorithm will start with the initial transformed 

magnetic field ( )
~

0 , ,y y zH k k+  as illustrated in Figure 3, where 0+ indicates the field 

immediately after the screen.  Since there is no screen for the initial field, 0+ is equal to 0.   

First we need to define the relationship between the initial magnetic field 

( )0 , ,yH y z+  and the current density function J
→

.  The initial ( )0 , ,yH y z+  relates to the 

current density J
→

 is described by equation (2.23) [Ref. 11] 

 

( ) ( )

( ) ( )

( )

( ) ( )

( ) ( )

0

( ')
||

0

'
||

0

0

( ')( ')
|| ||

10 , , ( ' 0) ' ' '
2

1 ' ' '
4

Res ' ' ( ' 0) ( ')
2

1 1 ' '.
2 2

1 Res
2

z

zn zn

znz

y

ik z z
z z

ik z ik z
z

ik z zik z z
z z z

H y z y f z dy dz

e k dk dy f z dz

i k e dy dz y f z e

f z f z dz

e k dk i k e

δ

π

δ

π

∞ ∞
+

−∞

∞ ∞ ∞
+

−∞ −∞

∞ ∞

−∞
∞

∞
++

−∞

= −

+ Γ

 − Γ − 

= +


 Γ − Γ 

∫ ∫

∫ ∫ ∫

∑ ∫ ∫

∫

∑∫

( )1
2

f z


 
 

≈

 (2.23) 
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where the second part of equation (2.23) describes the surface waves.  In many long-

range propagation problems, particularly in the VHF band and above, it is possible to 

completely ignore the surface wave terms as they decay rapidly with range [Ref. 5].  

Then equation (2.23) is reduced to a simple relationship between the ( )0 , ,yH y z+  and 

the Gaussian current source function ( )f z . 

Again, to ensure there is no discontinuity at zero crossing that gives erroneous 

results in the 3D PE numerical calculation, the magnetic field may be defined in terms of 

its odd and even parts, ( ), ,yoH x y z  and ( ), ,yeH x y z , respectively.  The methods are the 

same as in equations (2.4) and (2.5).  

From equations (2.4), (2.5), (2.23), and the transformed odd ( )
~

zof k  and even 

( )
~

zef k  current sources as defined by equations (2.21) and (2.22), we can easily derive 

the initial transformed odd ( )
~

0 , ,yo y zH k k+  and even ( )
~

0 , ,ye y zH k k+  magnetic fields.   

The initial odd transformed magnetic field ( )
~

0 , ,yo y zH k k+  is defined by equation (2.24) 

 
( )

( )2 2

~ ~
0

/ 2

10 , , ( )
2

sinz z

y y z zo

k
z t

H k k f k

ie k Hσ

+

−

=

= −
 (2.24) 

The initial even transformed magnetic field ( )
~

0 , ,ye y zH k k+  is defined by equation 

(2.25) 

 
( ) ( )

( )2 2

~~

/ 2

10 , ,
2

cosz z

ye y z e z

k
z t

H k k f k

e k Hσ

+

−

=

=
 (2.25)  

These fields are defined as column vectors having Nz elements.  From Section A, we 

know that the current density function J
→

 is independent of y, and the 
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( )( )0 1FFT yδ − = ; then we can repeat the column of the initial 

transformed ( )
~

0 0 , ,y y zH k k+  and ( )
~

0 , ,ye y zH k k+  Ny times.  Now we have the 2D initial 

transformed ( )
~

0 0 , ,y y zH k k+  and ( )
~

0 , ,ye y zH k k+  with dimension of Ny x Nz.  The 

number of elements along the y-axis and z-axis are Ny and Nz, respectively. 

The transformed magnetic field ( )
~

, ,y y zH x k k  is defined by equation (2.26).  

( ) ( ) ( )
~ ' '

||
0

, , ' ' , ', 'y z zik y ik z ik z
y y z z yH x k k dy dz e e k e H x y z

∞ ∞
− −

−∞

 = + Γ ∫ ∫  (2.26) 

Recall that zik ze−  and zik ze  are the free-space propagators for direct and reflected rays, 

respectively, and y’ and z’ are dummy variables of integration.  ( )|| zkΓ  is the reflection 

coefficient for the parallel polarization as a function of kz in the complex kz plane and in 

terms of normalized impedance Zs.  ( )|| zkΓ  and Zs are expressed as :   

 ( ) 0
||

0

z s
z

z s

k k Zk
k k Z

−Γ =
+

 (2.27) 

 
1

s
rc

Z
ε

=  (2.28) 

 
18 ( / )

( )rc r
i mS m

f MHz
σε ε= +  (2.29) 

where f is the operating frequency measured in MHz.  We use equations (2.4) and (2.5) to 

decompose the magnetic field ( ), ', 'yH x y z  into ( ), ', 'yoH x y z  and ( ), ', 'yeH x y z  and 

substitute them into equation (2.26).  Now we add the ( ), ', 'yoH x y z and ( ), ', 'yeH x y z  

together for z > 0 and perform variable substitutions to change the inner limit of 

integration from 0 to ∞ to -∞ to ∞ and divide it by ½, and similarly for z < 0.  The result 

is:  
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

~ ' '
||

' '
|| 0

~ ~
0|| ||

1, , 1 , ', ' ' '
2

1 1 , ', ' ' '
2

1 11 , , 1 , ,
2 2

y z

y z

i k y k z
y y z z ye

i k y k z
z y

ye yz y z z y z

H x k k k H x y z e dy dz

k H x y z e dy dz

k H x k k k H x k k

∞ ∞ − +

−∞ −∞

∞ ∞ − +

−∞ −∞

� �= + Γ� �

� �− Γ� �

� � � �= + Γ + − Γ� � � �

� �

� � (2.30) 

If we examine equation (2.30), we see that the double integrations of 

( ), ', 'yeH x y z  and ( ), ', 'yoH x y z  are the 2D Fourier transforms (FFT’s) of these fields.  

Thus equation (2.30) can be evaluated with the 2D (Ny x Nz) FFT’s instead of complex 

double integrations.  Thus ( )
~

, ,y y zH x k k can be defined in terms of ( )
~

, ,yoH x y z  and 

( )
~

, ,yeH x y z .  This is how we are going use the 2D FFT’s in the MatLab codes to 

implement equation (2.30). 

After making the adjustment for the screens, the fields begin their march in range 

immediately after the screen expressed as  

 
( ) ( ) ( )

( ) ( )

~ ~

||

~
0||

1, , 1 , ,
2
1 1 , , .
2

y yey z z y z

yz y z

H x k k k H x k k

k H x k k

+ +

+

 = + Γ 

 + − Γ 

 (2.31) 

Equation (2.31) provides the initial transformed magnetic field for the beginning of the 

main loop of the 3D PE algorithm as shown in Figure 3.  Once again, x+ indicates the 

fields immediately after the screen.  The initial fields ( )
~

0 , ,y y zH x k k+  and 

( )
~

, ,ye y zH x k k+  are defined as matrices having Ny x Nz elements.  These fields will allow 

the algorithm to account for all the vertical and lateral propagation of waves, which is the 

fundamental goal of the 3D PE formulation.  Previously developed 2D PE algorithms 

based on the vertical plane method did not account for the laterally propagating of waves.  

Consequently, the mean path loss was overestimated and the standard deviation of error 

tends to be higher [Ref. 11].  Therefore, the 3D PE formulation is expected to 
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substantially improve the accuracy relative to the 2D vertical plane method for the test 

problems.   

When we previously performed column-repeating the initial ( )
~

0 0 , ,y y zH k k+  

and ( )
~

0 , ,ye y zH k k+  by Ny times to create the 2D (Ny x Nz) ( )
~

0 0 , ,y y zH k k+  and 2D 

( )
~

0 , ,ye y zH k k+ , it was to ensure that the matrices always have dimension of Ny x Nz 

since this is a general aperture case.  When Ny is not equal to Nz, we have a rectangular 

aperture, and when they are equal to each other, we have a square aperture.  The 3D PE 

algorithm is implemented to support any Ny x Nz aperture.  Where Ny and Nz are elements 

along the vertical and horizontal ranges, respectively, with a suitable power of 2, i.e., Ny  

= 1024 or 2048.   

Discussion thus far pertains to what happens outside of the main loop of the 

algorithm.  Equation (2.31) provides the initial transformed field for the beginning of the 

main loop for the 3D PE algorithm; then we multiply ( )
~

0 , ,y zH k k+  by the Hanning 

window in frequency domain before marching.  We always multiply the fields by the 

Hanning window before taking 2D Fourier transform (FFT’s) or 2D inverse Fourier 

transform (IFFT’s) to contain them in space and wavenumber domains.  The Hanning 

window is discussed in the next section. 

D. THE HANNING WINDOW 

In order to contain the fields in space and wavenumber domains we multiply them 

with the Hanning window [Ref. 3] before taking 2D Fourier transform (FFT’s) or 2D 

inverse Fourier transform (IFFT’s).   The Hanning window provides a gradual rolloff to 

zero over the last quarter of the domain, and may be constructed from the two Hanning 

sequences below.  Equations (2.32) and (2.33) are the Hanning sequences along the 

horizontal range (y-direction) and the vertical range (z-direction), respectively.  The 

mirror images of ( )yh t  and ( )zh t  below t = 0 are used for negative wave numbers.   
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 ( ) 2

1 for 0 3 /8

4sin for 3 /8 / 2

y

y
y y

y

t N

h t t N t N
N
π

≤ ≤


=   ≤ ≤   
 

 (2.32) 

 ( ) 2

1 for 0 3 /8

4sin for 3 /8 / 2.

z

z
z z

z

t N
h t t N t N

N
π

≤ ≤
=   ≤ ≤ 

 

 (2.33) 

The Hanning window, in general, has a rectangular shape since Ny and Nz are not 

necessarily equal.  When Ny and Nz are equal, then the Hanning window has a square 

shape as discussed in the previous section.  Figures 9 and 10 illustrate the examples of 

512 elements of ( )yh t and ( )zh t  Hanning sequences. 

 

Figure 9. ( )yh t  Hanning Sequence. 

Y > 0 Y < 0

Y (m)

h y
(t)
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Figure 10. ( )zh t  Hanning Sequence.  

As in the previous section, the Hanning window must have a dimension of Ny x 

Nz.  Again, the procedure is similar to Section C; we first create a matrix from the 

Hanning sequence ( )zh t  by column repeating the sequence Ny times.  This method 

creates a Ny x Nz matrix from the ( )zh t  sequence.  Then we construct the second matrix 

from the Hanning sequence the ( )yh t  by row-repeating it Nz times (thereby constructing 

a Ny x Nz matrix from ( )yh t  sequence).  We column-repeated ( )zh t  Ny times to also 

ensure that we do not create a matrix that has a column dimension greater than Ny.  The 

same is true for the ( )yh t  case.  We row-repeated Nz times to ensure that the row of the 

matrix does not have dimension greater than Nz.  This implements the Hanning window 

in MatLab.  

Figure 11 shows the two Hanning matrices created from ( )zh t  and ( )yh t .  To 

construct the final Hanning window, the two matrices are multiplied together element by 

element.  Figure 12 shows an example of a 512 x 512 Hanning window.   A similar 

Z > 0

Z < 0
Ζ 

(m
)

hz(t)
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Hanning window is used in the 3D PE algorithm depending on the dimensions of Ny  and 

Nz. 

 

 

Figure 11. ( )yh t  and ( )zh t Hanning Matrices. 
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Figure 12. 3D Hanning Window. 
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E. SPATIAL AND FREQUENCY PARAMETERS 

The values of ∆x, ∆y, ∆z, ∆ky, and ∆kz, and the range of kx, ky, and kz are dictated 

by the Nyquist sampling theorem.    ∆x is the range increment, ∆y is the horizontal 

increment, and ∆z is the vertical increment.  kx ,  ky, and  kz are the range wavenumber, the 

horizontal wavenumber, and the vertical height wavenumber, respectively.  ∆ky and ∆kz 

are the increments of the horizontal and the vertical wavenumbers, respectively.  

References 3, 11, and 12 provide details to obtain the values for these parameters.  

For all the test problems in this thesis, we assume that ∆y = ∆z = λ and σz = λ.  

We pick ∆x between 25 m and 150 m.  If we choose a smaller ∆x, the computation takes 

longer.  If we choose a larger ∆x, the computation is accelerated, but we might miss the 

obstacles that are within in the marching step. Therefore, ∆x has to be optimally chosen 

accordingly for each problem.  However, ∆x can be chosen to have variable values within 

a simulation.  Furthermore, for σz = λ corresponding to the transmitting antenna of a 3-

dB bandwidth of 15o is shown in Table 2.  The value of σz can be picked from Table 2 to 

match the transmitting antenna 3-dB bandwidth. 

We compute the propagation factor F at the final range as well as at each 

marching step.  We also consider the field strengths at each marching step and on the 

rooftops.  In Chapter III, we shall present the results for the flat earth case.  The hilly 

terrain test problems are presented in Chapter IV. 

 

 

 

 

 

 

 

 



26 

 

 

 

 

 

 

 

 

 

 

 

 
THIS PAGE INTENTIONALLY LEFT BLANK 

 

 

 

 

 

 

 

 

 

 



27 

III. FLAT EARTH RESULTS 
 

In this chapter, we present results for the propagation factors for the flat earth and 

perfectly reflecting ground.  The propagation factor at the final range without obstacles 

between the transmitter and the receiver is simulated in Section A.  The result of the 3D 

PE model is compared with the result of the two-ray model [Ref 2].  Next, in Section B, 

we place a single absorbing screen between the transmitter and the receiver and present 

the result for the propagation factor at the final range.  The screen represents a building.  

The simulation result is compared with the result of the four-ray model [Ref. 2].   Then, 

in Section C, we place nine absorbing screens of uniform heights, equal spacing, and 

variable widths between the transmitter and the receiver.  These screens represent a row 

of buildings or houses in residential areas of a city.  In this case, the relative propagation 

factors are measured at the rooftops for each marching step.  The results of the 3D PE 

model are compared with the results presented by Andersen [Ref. 6] and Lee [Ref. 7].  

Finally in Section D, we examine 120 absorbing screens of uniform heights and equal 

spacing and measure the relative propagation factor at the final range.  Again, these 

screens represent a row of buildings or houses in residential areas of a city.  The result of 

the 3D PE model is compared with the numerical integration technique result proposed 

by Bertoni [Refs. 10]. 

A.   3D PE AND THE TWO-RAY MODEL RESULTS COMPARISON  

In this section we stimulate the two-ray model and the 3D PE model with the 

same parameters and compare their results.  Figure 13 shows the two-ray model over flat 

earth.  The two-ray model propagation factor, F2ray, [Ref. 2] is defined as follow with  

 0
2 1 ik R

rayF e ∆= + Γ , (3.1) 
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The Ht and Hr are the heights of the transmitter and receiver’s antennas, 

respectively, and d is the horizontal distance between the transmitter and receiver. R∆ is 

the path difference between direct and reflected rays, and Γ is the reflection coefficient 

for parallel polarization as a function of the grazing angle ψ and the complex impedance 

Zs. rcε  and S are the complex dielectric constant and conductivity of the medium, 

respectively.  It has been assumed that and t rd H H� . 

 

Figure 13. Two-ray Model Over Flat Earth. 

Figure 14 shows the vertical cut of the relative propagation factors, F’s, of the 

two-ray model and 3D PE model.  The two models are stimulated by the same parameters 

as listed on Figure 14.  The results were taken at a range of 1000 m from the transmitter a 

over flat plane.   The circle with the solid line corresponds to the two-ray model and the 

plain solid line is the 3D PE result.  The difference between the two results is within 1%.  

If we increase the height of the receiving antenna, the reflected ray will tend to decrease 

and the direct ray will dominate.  Therefore, we expect the two F’s to approach zero dB 

for large heights.  
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Figure 14. 3D PE and Two-ray Comparison (Vertical Cut).  

B.   3D PE AND FOUR-RAY RESULTS COMPARISON  

In Section A, we have shown that the result of the 3D PE agreed with the two-ray 

results.  Now, we place a 50 m by 49.5 m absorbing screen (a single knife-edge) in the 

3D PE model located 125 m from the transmitter and 375 m to the receiver with the 

frequency of operation of 1 GHz.    The loss in this case depends on the height of the 

knife-edge above ground, its relative location from the transmitter/receiver, the ground 

constants, and the frequency of operation.  Figure 15 shows an absorbing knife-edge 

between the transmitter and the receiver.  Table 2 provides the quantities required for the 

evaluation of the propagation factor . .k eF  for the 2D-four-ray model [Ref.  2].  The 3D PE 

model and the four-ray model are simulated for the same assumed parameters.  The four 

paths may be identified from the transmitter to receiver via the tip of the knife-edge.  The 

f = 1 GHz, ∆y = ∆z = λ
∆x = 100 m, σz = λ 
Ht = 30 m, d = 1000 m 
Ny = Nz = 1024 
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total received signal is the sum of the direct wave, if any, and the diffracted waves 

received via each one of the four paths.  The total diffracted field in the presence of the 

knife-edge is defined by equation (3.2).  

 
4

0
1

d n n
n

E E F
=

=∑ . (3.2) 

  

Figure 15.  An Absorbing Knife-Edge Between Transmitter and Receiver. 
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Coefficient, Γn
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Table 2. Quantities For The Evaluation of Fk.e,[After: Ref. 2]. 
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where Eon is the free-space field for the nth situation, Fn is the normalized field for that 

path, and Hk is the height of the knife-edge.  Assuming omni-directional patterns for the 

transmitting and receiving antennas the free-space field is defined as follows 

 , 1,...,4
o njk r

on
n

eE n
r

−

= = , (3.3) 

where rn is the free-space path length for the nth situation, and the individual knife-edge 

normalized fields are given by 

 ( )
1

1 1 1 2
2

n
n n

hF j
H

  
= − + Γ  

  
FFFF , (3.4) 

where F is the Fresnel integral, Γn is the total reflection factor, and hn is the clearance 

height for the nth path.  H1 is the radius of the first ellipsoid in the plane perpendicular to 

the line-of-sight (LOS) path and can be obtained from equation (3.5): 

 1 2
1

1 2

n d dH
d d
λ=

+
, (3.5) 

where d1 is the distance between the transmitter to the knife-edge, d2 is the distance 

between the knife-edge and the receiver, and λ is the operating wavelength.  The 

propagation factor . .k eF of the four-ray model can then be obtained from equation (3.6).   

 . .
1

d
k e

o

EF
E

= . (3.6) 

Additional details of the four-ray model are provided in reference 2.    

Figure 16 shows the vertical cut of the relative propagation factors, F’s, of the 

four-ray model and 3D PE model.  The circle with the solid line corresponds to the four-

ray model and the plain solid line is the 3D PE result.  The results were taken at a range 

of 500 m from the transmitter over flat plane.   The screen was placed 125 m from the 

transmitter and 375 m to the receiver.    The two results are in excellent agreement.  As 

previously mentioned, the relative propagation factors F’s approach zero dB as we 
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increase the receiving antenna height.  In this case, it is already close to zero dB at a 

receiving antenna height of only 80 meters. 
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Figure 16. 3D PE and Four-ray Comparison (Vertical Cut). 

C.  3D PE MODEL AND ANDERSEN’S AND LEE’S RESULTS 

COMPARISON 

In the previous section, we have demonstrated that the results of 3D PE model 

corresponded well with the results of the four-ray model.  In this section, we consider 

nine absorbing screens (multiple knife-edges) of uniform heights, equal spacing, and 

variable widths.  The results of the 3D PE model are compared with the results presented 

by Andersen [Ref. 6] and Lee [Ref. 7].  Andersen’s results were obtained from the 

uniform theory of diffraction (UTD) method.  Lee presented the theoretical results in 

f = 1 GHz, ∆y = ∆z = λ
∆x = 100 m, σz = λ 
Ht = 60 m, Hk = 50 m, Wk = 49.5 m 
d1 = 125 m, d2 = 375 m, d = 500 m 
Ny = Nz = 1024 
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reference 7.  Both the UTD and theoretical results assumed that the screen widths are 

infinitely long, and the screen heights are finite.  Full details on the UTD method are 

provided by references 6, 7, and 14.   

We also examine the effects of three finite screen widths on the relative 

propagation factors, F’s.  The three finite screen widths are 50 m, 25 m, and 12.5 m.  In 

each case, nine absorbing screens were placed between the transmitter and the receiver 

with each screen having a height of Hk =10 m.  The screens are placed 100 m apart from 

the each others.  The first screen is 100 m from the transmitting antenna, and the last 

screen is 100 m to the receiving antenna.  The distance between the transmitter and the 

receiver is 1000 m.  The propagation factors are determined at the top of the screens.    

The theoretical propagation factor, Fth, in dB is defined by equation (3.7).  It is a 

function of edge numbers, where the edge number is N +1, and N is a number of screens.  

 10
120log

1thF
N

 =  + 
 (3.7) 

Again, these screens represent a row of buildings or houses in residential areas of 

a city.  In these types of environments, the base station antennas of cellular 

communication systems are typically located above or near to the rooftops of the 

surrounding buildings.  In these cases, the propagation takes place over the buildings, 

which can be modeled by multiple forward diffraction past rows of buildings.  We model 

each row of buildings as an absorbing knife-edge, and via the 3D PE numerical technique 

we determine the loss associated with multiple forward diffraction over the knife-edges.  

Furthermore, depending on their construction, buildings may have a flat roof, a peaked 

roof, a flat roof with a parapet, or a myriad of other roof designs [Ref. 13].  Figure 17 

illustrates building profiles that mobile communication systems designers can be 

expected to encounter for typical urban environments between the base stations and 

mobile units.  Figure 17 (a) shows that two absorbing screens model a double parapets 

roof building.  Figure 17 (b) illustrates that a single parapet roof building is modeled by 

one absorbing screen with the screen placement at the start of the building. And Figure 17 

(c) shows that a peaked roof building is also modeled by one screen, but the screen 
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placement is at the center of the building corresponding to the peak of the building.  

Reference 13 provides more details on building profiles and screen placements. 

 

 

Figure 17. Typical Building Profiles in Urban Areas, with Their Equivalent Screens 

Placements [After: Ref. 13]. 

Figure 18 illustrates the multiple absorbing knife-edges with equal heights and 

equal spacing for this test problem.  The assumed parameters used in the 3D PE model 

are listed on Figure 19. 

(a) (b) (c)
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Figure 18. Perfectly Absorbing Equal Heights and Equal Spacing Multiple Screens. 
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Figure 19. 3D PE, UTD, and Theoretical Results. 
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Figure 19 shows the results of the 3D PE model with the results presented by 

Andersen and Lee.  The solid line is the theoretical result for 2D.  The circle with solid 

line represents the results presented by Andersen.  The triangle with dashed line are the 

results of 50 m screen width, the diamond with solid line are the results of the 25 m 

screen width, and the star with dashed line are the results of the12.5 m screen width.  The 

UTD, the 50 m and 25 m screen width cases, the curve slope track the theoretical closely 

up to the seventh screen.  After the seventh screen, they are only 0.5 dB different from 

the theoretical.  For the case of 12.5 m screen width, the results do not quite agree with 

the theoretical, UTD, 50 m, and 25 m results, but the difference is still less than 1 dB.  

These differences are caused by the fact that the smaller screen width allows the lateral 

waves and diffracted waves to constructively add or destructively add.  These lateral and 

diffracted waves might have added constructively when they arrive at the receiving 

antenna up to the seventh screen; then added destructively after the seventh screen, which 

resulted in a 1 dB different from the theoretical and approximately 1.5 dB different from 

the UTD and the two cases of the 3D PE model.  However, we expect to see the results of 

the 3D PE model approach the theoretical results if we consider wider screen widths that 

allow less lateral waves to contribute to the overall results.   

All presented data used absorbing screens of uniform heights and equal spacing, 

but the 3D PE algorithm is capable of supporting multiple screens of variable heights, 

widths, and spacing.  Based on the comparison results in sections A, B, and this section, 

we may assume that the 3D PE model is capable of computing the propagation factors 

over flat earth with multiple absorbing screens of non-uniform heights, unequal spacing, 

and variable screen widths.  Next we consider 120 screens of uniform heights and equal 

spacing over flat earth and perfectly reflecting ground. 

D. 3D PE MODEL AND 120 UNIFORM HEIGTH AND EQUAL SPACING 
SCREENS 

In this section we consider 120 screens of uniform heights and equal spacing.  

Again, the propagation takes place over the buildings.  As previously mentioned, the 3D 

PE model is capable of supporting multiple absorbing screens of variable heights, widths, 

and spacing.  But for the purpose of this study, we will only consider absorbing screens 

of uniform heights and equal spacing.  We compare the 3D PE model results with the 
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results presented by Bertoni [Ref. 10].  Figure 20 shows setup geometry of this test case.  

We consider a plane wave incident at an angle α = 1o at an operating frequency of 900 

MHz.  The distance between screens is 50 m, which means that the distance between the 

transmitter and the receiver is 6050 m apart.  Based on the incident angle α of 1o and the 

separation distance between the transmitter and the last screen, we determine that the 

vertical clearance height, Hch, from the top of the 120th screen to the tip of the 

transmitting antenna is 105 m.  If the screen height of 20 m is chosen, then the 

transmitting antenna height should be 125 m.  We assume the screens width to be 50 m.   

 

Figure 20. 120 Equal Height and Equal Spacing Screens. 

Figure 21 shows the height variation of the relative field strength, F, computed by 

3D PE model, incident on the row of 120 screens of 20 m heights and 50 m spacing for 

the parameters assumed the previous paragraph.  The receiving antenna height is 

measured in wavelength (m) while the magnitude of the field strength is in linear scale.  

Figure 19 also shows the simple diffraction in the shadow region of the receiving antenna 

Hr < 0.  We use the rooftop as the reference point for Hr  = 0.  Above the rooftops, the 

field variation is similar to that of a standing wave resulting from the summation of the 

direct waves and reflected waves from the plane of the rooftops.  The reflected waves are 

in fact the sum of the waves diffracted from the rooftops, whose phase variations cause 
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them to add constructively in the specular direction and other grating lobe directions.   

Because the diffraction coefficients decrease with angle, the reflected field is greatest in 

the specular direction.  
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Figure 21.  120 3D PE Results For Equal Height and Equal Spacing. 

Figure 22 shows the height dependence of the field strength, F, of the 3D PE 

model with the result from the numerical integration method presented by Bertoni and the 

result from the UTD [Ref. 10].  The circle with solid line is the sampling result of the 3D 

PE model shown in Figure 21.  The asterisk with solid line is the result of the numerical 

integration method, and the triangle with solid line is the result of the UTD.  In the 

shadow region, the results of the 3D PE model and the numerical integration method 

have good agreement, but the result of the UTD is slight higher, which implies that the 

UTD overestimates the field amplitude [Ref. 10].   Above the shadow region, the 
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numerical integration method and the UTD have excellent agreement, but the results of 

the 3D PE model are slightly lower, but still have good agreement with the UTD and the 

numerical integration method.    
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Figure 22. 3D PE, Bertoni, And UTD Results. 
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IV. HILLY TERRAINS RESULTS 
 

In this chapter, the propagation takes place over hilly terrains, and we study the 

field strengths.  A single round is considered in Section A.  The two hills of sinusoidal 

shape are considered in Section B.  In both cases, we place multiple absorbing screens of 

uniform heights, equal spacing, and variable widths between the transmitter and the 

receiver.  We measure the field strengths, instead of propagation factors, at the rooftops.  

The results of the 3D PE model are compared with the results presented by Piazzi and 

Bertoni [Refs. 8 - 10]. 

A. A ROUND HILL AND 3D PE MODEL  

In the previous test cases, we have examined the propagation factors over flat 

earth with multiple screens of uniform heights, equal spacing, and variable widths.  Now, 

we consider a rounded hill with multiple absorbing screens of uniform heights, equal 

spacing, and variable widths.  We examine the diffracted field strengths at the rooftops, 

instead of the propagation factors as in the previous cases.  We also consider the effects 

of finite screen widths on the field strengths.  We compare simulation results of the 3D 

PE model with results presented by Piazzi [Ref. 8].  Figure 23 illustrates setup geometry 

for this test case.  These screens represent a row of buildings or houses in residential 

areas of a well built-up city.  The buildings are 7 m high and the row separation Ds is 50 

m, and the screen widths are Wk = 100 m, 50 m, and 25 m.  The cylindrical hill has a 

radius Rh of 10 km [Ref. 8].  The maximum height of the hill is 50 m.  The base of the 

hill is at a distance of Xh =1000 m from the peak.  For the simulation, the transmitting 

antenna is assumed to be located at the point x = -1000 m from the hilltop and has a 

height of Ht = 57 m, which places it at the same height as the highest rooftops [Ref.  10].  

The current source is excited at an operating frequency of 900 MHz.   The rounded hill is 

defined by equation (4.1).   

 ( )2 2
h h hZ R x R H= − − − , (4.1) 

where Rh is the radius of the hill, Hk is the height of the buildings, and x is the range in 

meter.  The total simulation range is 6000 m.     
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Figure 23. A Round Hill with Multiple Screens of Uniform Heights and Equal 

Distances. 

Figure 24 shows the profile of multiple absorbing screens representing Figure 23 

used to carry out the simulation in the 3D PE model.  Furthermore, if we can model an 

urban area with multiple absorbing screens of variable heights, widths, and spacing, the 

3D PE model can evaluate the propagation factors as well as field strengths at any point 

in the simulation. 

Figure 25 shows the results of 3D PE model, the free-space result, and Piazzi’s 

result.  There are three 3D PE model results.  The solid line is the result of the 3D PE 

model with 100 m screen width.  The dashed line is the result of the 50 m screen width.  

The dashed and dot line is the result of the 25 m screen width.  The triangle with solid 

line is the free-space result, and the circles are Piazzi’s results.  Up to 1000 m away from 

the base station, the field strength behaves like free-space.  Then at the hilltop the field 

behaves like a single knife-edge case, where the magnitude of the field strength is 6 dB 

below the free-space.  Between the base station and the peak of the hill, the field strength 

does not behave like a free-space field.  Perhaps this is one of the limitations for the 3D 

PE model, but this is minor issue.  After the hilltop and behind the hill up to x = 1000 m, 

the field strength decays rapidly and linearly with distance at a rate of approximately 
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0.055 dB per meter.  This may be understood in terms of the creeping wave 

representation of the fields traveling over the houses.  At the point of x = 1000 m from 

the hilltop, the field strength reaches its lowest point, but begins to increase rapidly to 

maximum and then decreases slowly with distance.  We expect the field to continue 

decaying as it propagates away from the base of the hill, but that is not the case because 

the diffracted waves from the rooftops on the hillside.  We also expect the field to 

eventually level off and begin to decay and behave like multiple knife-edges propagation 

case.  As shown in Figure 25, the field levels off around x = 3000 m away from the base 

of the hill.  If we continue to measure the field strength for both the 3D PE model and the 

free-space, the field strength of the 3D PE model will eventually be 6 dB below the free-

space value as in the a single knife-edge case. 
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Figure 24. Side View of a Single Hill with Rows of Uniform Heights and Spacing 

Buildings. 
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 Figure 25 also shows that we have excellent agreement between Piazzi’s result 

and the result of the 3D PE model especially with screen width Wk =100 m.  However, it 

is not the case for the 50 m and 25 m screen widths.  Furthermore, for both the 50 m and 

25 m screen widths, there are oscillations as the fields move away from the base of the 

hill.  There appears to be more oscillation in the 25 m screen width case than for the 50 m 

case.  Its magnitude is also higher than the other cases, but it begins to approach other 

cases as it moves away from the base of the hill on backside.  The oscillations and higher 

magnitudes are caused by lateral waves because of the finite screen widths.  Therefore, if 

we increase the screen width, then we expect the result 3D PE model to agree with 

Piazzi’s result because Piazzi assumed the screen width is infinitely long.  This is 

equivalent to the 2D PE model which did not take into account the lateral waves.  This is 

demonstrated the 100 m screen width case, which prevented the lateral waves from 

significantly contributing to the overall result.   We have shown that the 3D PE model is 

capable of supporting the variable screen widths.  The last test problem we will present in 

this thesis is the two sinusoidal hills.     

−1000 0 1000 2000 3000 4000 5000
−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

Fi
el

d 
St

re
ng

th
 (d

B)

Screen Position (m)  
 

Figure 25. A Single Hill with Rows of Buildings of Uniform Heights and Spacing 

Field Strength. 
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B. 3D PE MODEL AND TWO HILLS OF SINUSOIDAL SHAPE 

In the previous section, we have considered a single rounded hill and 

demonstrated that the result of the 3D PE model agreed with Piazzi’s result.  We have 

also shown that the 3D PE model can support variable screen widths.  Now we consider 

two sinusoidal hills, and this is the last test problem we will consider for this thesis.  It 

has similar setup geometry as shown in Figure 23, except it has two hills of sinusoidal 

shape.  Figure 26 illustrates setup geometry for this test case.   

 

Figure 26. Two Hills of Sinusoidal Shape. 

Again, these screens represent a row of buildings or houses in residential areas of 

a well built-up city.  The buildings are 7 m high and the row separation Ds is 50 m with 

building widths Wk = 100 m, 50 m, and 25 m.  The maximum heights of the two hills are 

50 m.  The two sinusoidal shape hills have period of 3000 m [Ref. 9], which means the 

distance from peak to peak is 3000 m.  The distance Xh from the first peak to its base, 

measured toward the second peak, is 1500 m.  For the simulation, the transmitting 

antenna is assumed to be located at the point x = -1500 m from the first hilltop and has a 

height of Ht = 57 m, which again places it at the same height as the highest rooftops [Ref.  

10].  The two hills of sinusoidal shape are defined by  

 ( ) 225 25cos
3000k

xZ x H π = + +  
 

 (4.2) 
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where Hk is the height of the buildings and x is the range in meters. 

Figure 27 shows the profile of multiple absorbing screens representing Figure 24 

used to carry out the simulation in the 3D PE model.  The operating frequency is 900 

MHz and same as the previous case. 
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Figure 27. Side View of two Sinusoidal Hills plus Buildings Profile.  

Figure 28 shows the composite results of the 3D PE model, free-space and Piazzi.  

The solid line is the result of the 3D PE model with 100 m screen width.  The dashed line 

is the result of the 50 m screen width.  The dashed and dot line is the result of the 25 m 

screen width.  The triangle with solid line is the free-space result.  And the circles are 

Piazzi’s results.  Up to 1500 m away from the base station, the field strength behaves like 

free-space, which corresponds to the peak of the first hill.  Then at the first hilltop the 

field behaves like a single knife-edge problem, same as the previous case, where the 
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magnitude of the field strength is 6 dB below the free-space.  As in the one hill problem, 

the field does not behave like free-space field when it is close to the base station.  The 

field strength minima occur at x = 1000 and 4000 m which do not correspond to the bases 

of the hills as it did in a single round hill case.  When we decrease the widths of the 

screen, we see more oscillations as demonstrated in the one hill case.  The oscillation 

appears to be more severe in the 25 m screen width case.  These oscillations are caused 

by the lateral waves.     
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Figure 28.  Two Sinusoidal Hills with Rows of Buildings of Uniform Heights and 

Spacing Field Strength. 

We have thus demonstrated that the 3D PE model can support both flat and hilly 

terrains with multiple absorbing screens of uniform heights, equal spacing, and variable 

screen widths. 

Wk = 100 m 
Wk = 50 m 
Wk = 25 m 
Free Space 
Piazzi 
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V. CONCLUSIONS AND RECOMMENDATIONS 

 

A. CONCLUSIONS 

A 3D model based on the parabolic equation (PE) for predicting propagation path 

loss has been developed in this thesis.  Two types of terrains were considered: the flat 

earth and the hilly terrain.  For the flat earth case, four test problems were examined.  The 

results from these cases were compared with results available from the two-ray model, 

the four-ray model, the uniform theory of diffraction (UTD), Lee’s formulation, and the 

numerical integration technique as proposed by Bertoni.  For the hilly terrain case, two 

test problems were considered.  The results from this case were compared with the results 

presented by Piazzi and Bertoni.  For all these test problems, ground was assumed to be 

non-perfectly reflecting, and buildings as perfectly absorbing because all available results 

that were used in the comparisons made these assumptions.   

For the flat earth case, the first test problem was to simulate and determine the 

propagation factor F at the final range over flat earth without any obstacles between the 

transmitter and the receiver.  The transmitting antenna had a height Ht = 30 m, and the 

operating frequency was 1 GHz.  The receiver located 1000 m from the transmitter.  The 

results of the 3D PE model compared excellently with those of the two-ray model.   

The second test problem was to simulate and determine F with a single absorbing 

screen placed between the transmitter and the receiver that had a height Hk = 50 m, and a 

width Wk = 49.5 m.  The screen representing a building was located 125 m from the 

transmitter and 375 m to the receiver.  The transmitting antenna height Ht = 60 m, and the 

operating frequency was 1 GHz.  The results of the 3D PE model in this case were 

compared with the results of the four-ray model.  Once again, the results had excellent 

agreement.  F approached 0 dB as the receiving antenna height increased.  In this case, 

both the 3D PE model and the four-ray results approached 0 dB at the receiving antenna 

height of 80 m. 

In the third test problem, nine absorbing screens of uniform heights and equal 

spacing were placed between the transmitter and the receiver.  This test case was 
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equivalent to a radiowave propagating over a row of houses in an urban area.  The 

screens had a height Hk  = 10 m and the widths, Wk.  The three different screen widths Wk  

were 12.5 m, 25 m, 50 m.  Each screen had a height of 10 m and a spacing distance of 50 

m.  Their effects on the propagation factor F were studied.  The propagation factor in this 

case was determined at the rooftops.  The results of the 3D PE model were compared 

with the UTD results presented by Andersen and the theoretical model results proposed 

by Lee.  The 3D PE model results with the screen widths of 25 m and 50 m had excellent 

agreement with the UTD, and both the UTD and the 3D PE model results followed the 

theoretical results only up to the seventh screen.  Then up to the ninth screen they were 

0.5 dB higher than the theoretical predictions.  For the 12.5 m case, the results were 

slightly higher than all cases up to the seventh screen; then they were lower than all cases 

up to the ninth screen.  These differences were caused by the lateral waves due to the 

finite screen width.    

The last test problem for the flat earth case involved 120 absorbing screens of 

uniform heights and equal spacing between the transmitter and the receiver.  These 

screens represented row of buildings or houses.  The transmitting antenna had a height of 

Ht = 125 m, and the operating frequency was 900 MHz.  The screens had the height, Hk = 

20 m, and the width, Wk = 50 m.  They were spaced 50 m apart.  The propagation factor 

was determined at the final range.  The results were compared with the results of the 

numerical integration technique presented by Bertoni and the UTD.  In the shadow 

region, the results of the 3D PE and the numerical integration method agreed, but the 

result of the UTD was slightly higher, which implied that the UTD overestimated the 

field amplitude.  Above the shadow region, the numerical integration method and the 

UTD had excellent agreement, and although the results of the 3D PE model were 0.25 dB 

lower than those two models, nonetheless there was reasonably good agreement with 

them.    

For the hilly terrain case, the first test problem was a single rounded hill with 

multiple absorbing screens of uniform heights and equal spacing.  The screens had the 

heights Hk = 7 m.  The field strengths were determined on rooftops, and were compared 

with the numerical integration technique results presented by Piazzi and Bertoni.  The 

second test problem, the propagation took placed over two hills of sinusoidal shape with 
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multiple absorbing screens of uniform heights and equal spacing.  Again, the results were 

compared with the results presented by Piazzi and Bertoni.  The screens in this case also 

had the heights Hk = 7 m.  In both cases, three variable screen widths Wk were considered:  

25 m, 50 m and 100 m.  Their effects on the field strengths were studied.  For both cases, 

the transmitting antenna height was Ht = 57 m, and the operating frequency was 900 

MHz. 

For a single round hill, the result of the 3D PE model with screen width of 100 m 

compared excellently with the Piazzi’s result.  Before the hilltop, the field strength 

behaved like free-space.  Then at the hilltop the field behaved as in a single knife-edge 

case, where the magnitude of the field strength was 6 dB below the free-space.  On the 

backside of the hill, the field strength decayed rapidly and linearly with distance, but 

began to increase rapidly to maximum and then decreased slowly with distance.  For the 

cases of 25 m and 50 m screen width, the field strengths agreed with the100 m case and 

Piazzi’s result until after the base of the hill on the backside after which it began to 

increase rapidly with oscillations.  These oscillations were caused by the laterally 

diffracted waves.  The oscillations were more prominent in the 25 m case than the 50 m 

case.    

   For two sinusoidal hills, the field strengths behaved like free-space up to the 

first hilltop similar to the previous case.  Then at the first hilltop the fields behaved like a 

single knife-edge problem, where the magnitude of the field strength is 6 dB below the 

free-space.  The field strength minima occurred at x = 1000 m and 4000 m which did not 

correspond to the bases of the hills.  When the widths of the screen were decreased, the 

oscillations showed up similarly to the single rounded hill case.  The oscillations 

appeared to be more severe in the screen width of 25 m. 

Finally, the 3D PE model for predicting propagation path loss in urban areas on 

flat and hilly terrains was developed.  Six different test problems were considered.  The 

results were compared with the results available in open literature and showed excellent 

agreement.  We have also demonstrated that the 3D PE model can support both flat and 

hilly terrains with multiple absorbing screens of uniform heights, equal spacing and 

variable screen widths.   
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B. RECOMMENDATIONS 

Since realistic environments will have non-perfectly reflecting obstacles, a more 

complete 3D PE formulation for non-perfectly reflecting obstacles should be studied as 

well as the effects of the antenna depolarization.  In addition, it is recommended that the 

algorithm be implemented in C or Fortran for faster computation, along with the 

automating terrain and building inputs for the model.  It may be desirable to add the 

capability to utilize the Digital Terrain Elevation Data (DTED) and Digital Feature 

Attribute Data (DFAD) available at the National Imagery and Mapping Agency (NIMA).   
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APPENDIX A:  3D PE ALGORITHM AND 2RAY MODEL 
 

Below is the MatLab program listing of the 3D parabolic equation model and the 

2Ray model.  This program will compute the propagation factors for the 3D PE with the 

2Ray model over perfectly flat earth and constant admittance plane.  The operating 

frequency is 1 GHz. 

 
%**********************************************************************
% Declaring Contants
%**********************************************************************

hold off;
tic
c=3e8; % Speed of light
f=1e9; % Operating frequency
Lamda=c/f; % Wavelength
ko=(2*pi)/Lamda; % Wavenumber
S=25; % Ground conductivity in mS/m
Er=5; % Relative dielectric constant

Dz=Lamda; % Delta Z in meter
Dy=Lamda; % Delta Y in meter
sigmaz=Lamda; % Current source standard deviation

%**********************************************************************
% Input Parameters
%**********************************************************************

Ht=30; % Transmitting antenna height

D=1000; % Range from the transmitter
Dx=100; % Incremental range (Dx) in meter

Ny=1024; % Sample size in the y-direction
Nz=1024; % Sample size in the z-direction

%**********************************************************************
% Define range in y-direction and z-direction
%**********************************************************************

ymax=Ny*Dy/2; % maximum range in y-direction
y1=0:Dy:ymax; % First half of y range incrementally increase
y=[y1 zeros(1,Ny/2-1)]; % y array

zmax = Nz*Dz/2; % Find maximum z range (Zmax)
z1=0:Dz:zmax; % First half of the range of Zmax+1
z=[z1 zeros(1,Nz/2-1)]; % Construct a full z array
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%**********************************************************************
% Define Wavenumbers in Spatial Domain
%**********************************************************************

kymax=pi/Dy; % Maximum wavenumber in y-direction
Dky=2*kymax/Ny; % detla ky
ky1=-kymax:Dky:kymax; % Range of ky
ky=[ky1(:,(Ny/2)+1:Ny+1) ky1(:,2:Ny/2)];

kzmax=pi/Dz; % Maximum wavenumber in z-direction
Dkz=2*kzmax/Nz; % detla kz
kz1=-kzmax:Dkz:kzmax; % Range of kz
kz=[kz1(:,(Nz/2)+1:Nz+1) kz1(:,2:Nz/2)];

%**********************************************************************
% Compute Wavenumbers in Frequency Domain, kx
%**********************************************************************

Ky=meshgrid(ky,1:Nz); % Create a NyxNz matrix of ky row-repeat
Kz=meshgrid(kz,1:Ny).'; % Create a NyxNz matrix of kz column-
repeat
kx=sqrt(ko^2-Ky.^2-Kz.^2); % Compute theNy x Nz kx matrix

clear Ky; % Clear matrices Ky and Kz from memory
clear Kz; % To make the algorithm run faster

%**********************************************************************
% Compute reflection coefficient
%**********************************************************************

Erc=Er+i*18*S/(f/1e6); % Complex dielectric
Zs=1/sqrt(Erc); % Impedance
Gamma=(kz-ko*Zs)./(kz+ko*Zs); % Complex reflection coefficient
%gamma=-ones(Nz,Ny); % Setting gamma = -1
gamma=meshgrid(Gamma,1:Ny).'; % Create reflection coefficient matrix

% by column repeating

%**********************************************************************
% Define the Hanning Window
%**********************************************************************

Hya=[]; % An empty vector
for t=0:Ny/2; % Define Ny/2 + 1 points

if (t>=0 & t<=3*Ny/8) % Define first 3Ny/8 +1 points
hy=1;

elseif (t>=3*Ny/8 & t<=Ny/2)% Define next Ny/8 points
hy=(sin(4*pi*t/Ny))^2;

end
Hya=[Hya hy]; % Construct the first half of Hanning

end % window of 1+Ny/2 elements

Yy=fliplr(Hya(:,2:Ny/2)); % Flip left to right of the Hanning
% windows from the

second element to
% Ny/2 element for total of [1x(Ny/2-1)]

HY=[Hya Yy]; % Hanning window in y-direction
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Hzb=[]; % An empty vector
for t=0:Nz/2; % Define Nz/2 + 1 points

if (t>=0 & t<=3*Nz/8) % Define first 3Nz/8 +1 points
hz=1;

elseif (t>=3*Nz/8 & t<=Nz/2)% Define next Nz/8 points
hz=(sin(4*pi*t/Nz))^2;

end
Hzb=[Hzb hz]; % Construct the first half of Hanning

end % window of 1+Nz/2 elements

Yz=fliplr(Hzb(:,2:Nz/2)); % Flip left to right of the Hanning
% windows from the second element to
% Nz/2 element for total of [1x(Nz/2-1)]

HZ=[Hzb Yz]'; % Hanning window in z-direction

Hmy=meshgrid(HY,1:Nz); % Row repeat
Hmz=meshgrid(HZ,1:Ny)'; % Column repeat

H3D=(Hmy.*Hmz); % 3D Hanning window

%**********************************************************************
% Gaussian Current Source
%**********************************************************************

f=(1/(sqrt(2*pi)*sigmaz))*exp(-(z-Ht).^2/(2*sigmaz^2));

f_tilda=Dz*fft(f); % Fourier transform of f(z)

%**********************************************************************
% Initial H-field at x=0
%**********************************************************************

g_tilda=exp(-kz.^2*sigmaz^2/2); % initial g tilda
hye0_tilda=g_tilda.*cos(kz*Ht); % Initial hye_tilda(0+,ky,kz) field
hyo0_tilda=-i*g_tilda.*sin(kz*Ht); % Initial hyo_tilda(0+,ky,kz) field

% Initial even H-field, column repeat
Hye0_tilda=meshgrid(hye0_tilda,1:Ny).';

% Initial odd H-field, column repeat
Hyo0_tilda=meshgrid(hyo0_tilda,1:Ny).';

% Include the reflection coefficient
Hy0_tilda=0.5*(1+gamma).*Hye0_tilda+0.5*(1-gamma).*Hyo0_tilda;

Hy_tilda=Hy0_tilda.*H3D;% Hy_tilda(0+,ky,kz) at x=0

Exp2=exp(i*kx*Dx); % Marching range
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%**********************************************************************
% 3D Parabolic Equation Basic Algorithm
%**********************************************************************

for x=0:Dx:D-Dx;

Hy_tilda_Dx=Hy_tilda.*Exp2; % Hy_tilda(Dx,ky,kz)

Hy=Dkz*Dky*(Ny*Nz*ifft2(Hy_tilda_Dx))/(2*pi)^2;
% ifft2 wrt to ky and kz

Hy_H=Hy.*H3D; % Apply the Hamming window

Hyz1=Hy_H(1:Nz/2+1,:); % H-field for z > 0

Hyz0=flipud(Hy_H(2:Nz/2,:)); % H-field for z < 0

Hye=[Hyz1; Hyz0]; % Even H-field

Hyo=[Hyz1; -Hyz0]; % Odd H-field

Hye_tilda=(Dz*Dy)*fft2(Hye); % Take the FFT of the even H~
Hye_tilda_H=Hye_tilda.*H3D; % Apply the Hanning window in freq

Hyo_tilda=(Dz*Dy)*fft2(Hyo); % Take the FFT of the odd H~
Hyo_tilda_H=Hyo_tilda.*H3D; % Apply the Hanning window in freq

% Multiply by the reflection coefficient
Hye_tilda_g=0.5*(1+gamma).*Hye_tilda_H;

% Multiply by the reflection coefficient
Hyo_tilda_g=0.5*(1-gamma).*Hyo_tilda_H;

Hy_tilda1=Hye_tilda_g + Hyo_tilda_g;% Hy_tilda(x,ky,kz)

Hy_tilda=Hy_tilda1.*H3D; % Apply the Hanning window

end

%**********************************************************************
% Compute Propagation Factor at Final Range
%**********************************************************************
J=2; % Pick a column of H-field at final range

rho=sqrt(D^2+(J)^2); % Distance from transmitter to receiver
R=sqrt((z(:,1:Nz/2+1)-Ht).^2 + rho^2);

% Distance from transmitter to receiver
theta=asin(rho./R); % Angle Theta in spherical coordinate
phi=asin(J/rho); % Angle Phi in spherical coordinate

g_tilda_fs=exp(-((cos(theta)*ko).^2*sigmaz^2)/2);
% Free-space g_tilda

Hyfs=-i*ko*sin(theta)*cos(phi).*g_tilda_fs.*exp(i*ko*R)./(4*pi*R);
% Free-space H-field

A=Hy_H(1:Nz/2+1,2); % z > 0 of a column of the H-field
F=20*log10(abs(A./Hyfs')); % Propagation factor

save H:\THESIS_2001\MATLAB_CODES\PERF2Ray F -ASCII
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%**********************************************************************
% 2Ray-Model
%**********************************************************************

J=2; % A column final H-field

rho=sqrt(D^2+(J)^2); % Distance from transmitter to the
receiver
Hr=z(1,1:Nz/2+1); % The receiving antenna height
DR=2*Ht*Hr/rho; % Path difference between direct and

% ground reflected waves
psi=atan((Ht+Hr)/rho); % Grazing angle

Z2ray=sqrt(Erc-cos(psi).^2)/Erc;% Normalized surface impedance Z(psi)
gamma2ray=((sin(psi)-Z2ray)./(sin(psi)+Z2ray));% Reflection coefficient
Tworay=abs(1+gamma2ray.*exp(i*ko*DR));% 2ray model propagation factor
F2ray=20*log10(Tworay); % 2ray model propagation factor in dB

save H:\THESIS_2001\Base_Line_Codes\RF2Ray F2ray -ASCII
save H:\THESIS_2001\Base_Line_Codes\3DHanning H3D -ASCII

%**********************************************************************
* Plot results
%**********************************************************************

figure(1)
mesh(H3D)
view(-37.5, 70)

figure(2)
y=0:Dz:(Nz)*Dz/2;
plot(F,y,F2ray,y,'o-r')
axis([-30 6 0 Nz*Dz/2])
legend('3D Parabolic','2Ray')
toc
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APPENDIX B:  A 3D PE MODEL AND 4RAY MODEL 

 

Below is the MatLab program listing of the 3D parabolic equation model and the 

4Ray model.  This program will compute the propagation factors for the 3D PE model 

and the 4Ray model over perfectly flat earth and constant admittance plane.  A single 

absorbing knife-edge is placed between he transmitter and receiver.  The operating 

frequency is 1 GHz. 
%**********************************************************************
% Declaring Contants
%**********************************************************************
hold off;
tic
c=3e8; % Speed of light
f=1e9; % Operating frequency
Lamda=c/f; % Wavelength
ko=(2*pi)/Lamda; % Wavenumber
S=400; % Ground conductivity in mS/m
Er=10; % Relative dielectric constant

Dz=Lamda; % Delta Z in meter
Dy=Lamda; % Delta Y in meter
sigmaz=Lamda; % Standard deviation of Z

%**********************************************************************
% Input Parameters
%**********************************************************************

Ht=60; % Transmitting antenna height
Hk=50; % Knife edge height
Wk=49.8; % Knife edge width

d1=125; % Distance from transmitter to knife
d2=375; % Distance from knife edge to receiver
D=500; % Range from the transmitter
Dx=125; % Incremental range (Dx) in meter

Ny=1024; % Sample size in the y-direction
Nz=1024; % Sample size in the z-direction

%**********************************************************************
% Define range in y-direction and z-direction
%**********************************************************************

ymax=Ny*Dy/2; % maximum range in y-direction
y1=0:Dy:ymax; % First half of y range
y=[y1 zeros(1,Ny/2-1)]; % y array

zmax = Nz*Dz/2; % Find maximum z range (Zmax)
z1=0:Dz:zmax; % First half of the range of Zmax+1
z=[z1 zeros(1,Nz/2-1)]; % Construct a full z array
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%**********************************************************************
% Define Wavenumbers in Spatial Domain
%**********************************************************************

kymax=pi/Dy; % Maximum wavenumber in y-direction
Dky=2*kymax/Ny; % detla ky
ky1=-kymax:Dky:kymax; % Range of ky
ky=[ky1(:,(Ny/2)+1:Ny+1) ky1(:,2:Ny/2)];

kzmax=pi/Dz; % Maximum wavenumber in z-direction
Dkz=2*kzmax/Nz; % detla kz
kz1=-kzmax:Dkz:kzmax; % Range of kz
kz=[kz1(:,(Nz/2)+1:Nz+1) kz1(:,2:Nz/2)];

%**********************************************************************
% Compute Wavenumbers in Frequency Domain, kx
%**********************************************************************

Ky=meshgrid(ky,1:Nz); % Create a NyxNz matrix of ky row-repeat
Kz=meshgrid(kz,1:Ny).'; % Create a NyxNz matrix of kz column-
repeat
kx=sqrt(ko^2-Ky.^2-Kz.^2); % Compute theNy x Nz kx matrix

clear Ky; % Clear matrices Ky and Kz from memory
clear Kz; % To make the algorithm run faster

%**********************************************************************
% Compute reflection coefficient
%**********************************************************************

Erc=Er+i*18*S/(f/1e6); % Complex dielectric
Zs=1/sqrt(Erc); % Impedance
Gamma=(kz-ko*Zs)./(kz+ko*Zs); % Complex reflection coefficient
%gamma=-ones(Nz,Ny); % Setting gamma = -1
gamma=meshgrid(Gamma,1:Ny).'; % Create reflection coefficient matrix

% by column repeating

%**********************************************************************
% Define the Hanning Window
%**********************************************************************

Hya=[]; % An empty vector
for t=0:Ny/2; % Define Ny/2 + 1 points

if (t>=0 & t<=3*Ny/8) % Define first 3Ny/8 +1 points
hy=1;

elseif (t>=3*Ny/8 & t<=Ny/2)% Define next Ny/8 points
hy=(sin(4*pi*t/Ny))^2;

end
Hya=[Hya hy]; % Construct the first half of Hanning

end % window of 1+Ny/2 elements

Yy=fliplr(Hya(:,2:Ny/2)); % Flip left to right of the Hanning
% windows from the

second element to



61 

% Ny/2 element for total of [1x(Ny/2-1)]
HY=[Hya Yy]; % Hanning window in y-direction

Hzb=[]; % An empty vector
for t=0:Nz/2; % Define Nz/2 + 1 points

if (t>=0 & t<=3*Nz/8) % Define first 3Nz/8 +1 points
hz=1;

elseif (t>=3*Nz/8 & t<=Nz/2)% Define next Nz/8 points
hz=(sin(4*pi*t/Nz))^2;

end
Hzb=[Hzb hz]; % Construct the first half of Hanning

end % window of 1+Nz/2 elements

Yz=fliplr(Hzb(:,2:Nz/2)); % Flip left to right of the Hanning
% windows from the second element to
% Nz/2 element for total of [1x(Nz/2-1)]

HZ=[Hzb Yz]'; % Hanning window in z-direction

Hmy=meshgrid(HY,1:Nz); % Row repeat
Hmz=meshgrid(HZ,1:Ny)'; % Column repeat

H3D=(Hmy.*Hmz); % 3D Hanning window

%**********************************************************************
% Gaussian Current Source
%**********************************************************************

f=(1/(sqrt(2*pi)*sigmaz))*exp(-(z-Ht).^2/(2*sigmaz^2));

f_tilda=Dz*fft(f); % Fourier transform of f(z)

%**********************************************************************
% Initial H-field at x=0
%**********************************************************************

g_tilda=exp(-kz.^2*sigmaz^2/2); % initial g tilda
hye0_tilda=g_tilda.*cos(kz*Ht); % Initial hye_tilda(0+,ky,kz) field
hyo0_tilda=-i*g_tilda.*sin(kz*Ht); % Initial hyo_tilda(0+,ky,kz) field

% Initial even H-field, column repeat
Hye0_tilda=meshgrid(hye0_tilda,1:Ny).';

% Initial odd H-field, column repeat
Hyo0_tilda=meshgrid(hyo0_tilda,1:Ny).';

% Include the reflection coefficient
Hy0_tilda=0.5*(1+gamma).*Hye0_tilda+0.5*(1-gamma).*Hyo0_tilda;

Hy_tilda=Hy0_tilda.*H3D;% Hy_tilda(0+,ky,kz) at x=0

Exp2=exp(i*kx*Dx); % Marching range
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%**********************************************************************
% 3D Parabolic Equation Basic Algorithm
%**********************************************************************
C=0; % Setting the counter

for x=0:Dx:D-Dx;
Hy_tilda_Dx=Hy_tilda.*Exp2; % Hy_tilda(Dx,ky,kz)

Hy=Dkz*Dky*(Ny*Nz*ifft2(Hy_tilda_Dx))/(2*pi)^2;% ifft2 wrt to ky and
kz

Hy_H=Hy.*H3D; % Apply the Hamming window in spatial domain

C=C+Dx; % Counter

if (C == d1) % When X= 125 M zero out the field
Hy_H(1:round(Hk/Dz),1:round(Wk/Dy/2))=0;
Hy_H(1:round(Hk/Dz),(Ny-round(Wk/Dy/2)):Ny)=0;

end

Hyz1=Hy_H(1:Nz/2+1,:); % H-field for z > 0

Hyz0=flipud(Hy_H(2:Nz/2,:)); % H-field for z < 0

Hye=[Hyz1; Hyz0]; % Even H-field

Hyo=[Hyz1; -Hyz0]; % Odd H-field

Hye_tilda=(Dz*Dy)*fft2(Hye); % Take the FFT of the even H~
Hye_tilda_H=Hye_tilda.*H3D; % Apply the Hanning window in freq

Hyo_tilda=(Dz*Dy)*fft2(Hyo); % Take the FFT of the odd H~
Hyo_tilda_H=Hyo_tilda.*H3D; % Apply the Hanning window in freq

% Multiply by the reflection coefficient
Hye_tilda_g=0.5*(1+gamma).*Hye_tilda_H;

% Multiply by the reflection coefficient
Hyo_tilda_g=0.5*(1-gamma).*Hyo_tilda_H;

Hy_tilda1=Hye_tilda_g + Hyo_tilda_g;% Hy_tilda(x,ky,kz)

Hy_tilda=Hy_tilda1.*H3D; % Apply the Hanning window

end

%**********************************************************************
% Compute the propagation factor at the final range
%**********************************************************************
J=2; % First column final H-field

rho=sqrt(D^2+(J)^2); % Distance from Tx base of Rx
R=sqrt((z(:,1:Nz/2+1)-Ht).^2 + rho^2); % Distance from Tx to Rx

theta=asin(rho./R); % Angle Theta
phi=asin(J/rho); % Angle Phi
g_tilda_fs=exp(-((cos(theta)*ko).^2*sigmaz^2)/2); % Free-space g_tilda
Hyfs=-i*ko*sin(theta)*cos(phi).*g_tilda_fs.*exp(i*ko*R)./(4*pi*R); %
Free-space H-field
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A=Hy_H(1:Nz/2+1,2); % 1st column of the final H-field
F=20*log10(abs(A./Hyfs')); % Propagation factor

save H:\THESIS_2001\MATLAB_CODES\PERF4Ray F -ASCII
%**********************************************************************
% Four-Ray Model
%**********************************************************************

% The radius of any member n of the family of ellipsoids in a plane
perpendicular to the LOS path

H1=sqrt((Lamda*d1*d2)/(d1+d2));

h1=Hk-(Ht*d2+z(:,1:Nz/2+1)*d1)/D; % 1st clearance height
Gamma1=1; % Reflection coefficient for case 1
x1=sqrt(2)*h1/H1;
C1=mfun('FresnelC',x1); % Real part of the Fresnel Integral
S1=mfun('FresnelS',x1); % Imag part of the Fresnel Integral
Fn1=C1-j*S1; % Solution for the Fresnel Integral
F1=0.5*(1-(1+j)*Fn1)*Gamma1; % First knife-edge normalized field
r1=sqrt(D^2+(Ht-z(:,1:Nz/2+1)).^2);
E01=exp(-j*ko*r1)./r1;
Ed1=E01.*F1;

h2=Hk+(Ht*d2-z(:,1:Nz/2+1)*d1)/D; % 2nd clearance height
psiA=atan((Hk+Ht)/d1); % Grazing angle of case 2
%GammaA=(sin(psiA)-Zs)/(sin(psiA)+Zs);% Refl. coefficient for case 2
GammaA=-1;
x2=sqrt(2)*h2/H1;
C2=mfun('FresnelC',x2); % Real part of the Fresnel Integral
S2=mfun('FresnelS',x2); % Imag part of the Fresnel Integral
Fn2=C2-j*S2; % Solution for the Fresnel Integral
F2=0.5*(1-(1+j)*Fn2)*GammaA; % 2nd knife-edge normalized field
r2=sqrt(D^2+(Ht+z(:,1:Nz/2+1)).^2);
E02=exp(-j*ko*r2)./r2;
Ed2=E02.*F2;

h3=Hk-(Ht*d2-z(:,1:Nz/2+1)*d1)/D; % 3rd clearance height
psiB=atan((Hk+z(:,1:Nz/2+1))/d2); % Grazing angle of case 3
% GammaB=(sin(psiB)-Zs)./(sin(psiB)+Zs); % Refl. coefficient for case 3
GammaB=-1;
x3=sqrt(2)*h3/H1;
C3=mfun('FresnelC',x3); % Real part of the Fresnel Integral
S3=mfun('FresnelS',x3); % Imag part of the Fresnel Integral
Fn3=C3-j*S3; % Solution for the Fresnel Integral
F3=0.5*(1-(1+j)*Fn3).*GammaB; % 3rd knife-edge normalized field
r3=sqrt(D^2+(Ht+z(:,1:Nz/2+1)).^2);
E03=exp(-j*ko*r3)./r3;
Ed3=E03.*F3;

h4=Hk+(Ht*d2+z(:,1:Nz/2+1)*d1)/D; % 4th clearance height
GammaC=GammaA*GammaB; % Reflection coefficient for case 4
x4=sqrt(2)*h4/H1;
C4=mfun('FresnelC',x4); % Real part of the Fresnel Integral
S4=mfun('FresnelS',x4); % Imag part of the Fresnel Integral
Fn4=C4-j*S4; % Solution for the Fresnel Integral
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F4=0.5*(1-(1+j)*Fn4).*GammaC; % 4th knife-edge normalized field
r4=sqrt(D^2+(Ht-z(:,1:Nz/2+1)).^2);
E04=exp(-j*ko*r4)./r4;
Ed4=E04.*F4;

Fknife=(Ed1+Ed2+Ed3+Ed4)./E01; % Total normalized fields

FknifedB=20*log10(abs(Fknife)); % Total normalized fields in dB

save H:\THESIS_2001\MATLAB_CODES\RF4Ray FknifedB -ASCII
%**********************************************************************
% Plot results
%**********************************************************************

figure(1)
y=0:Dz:(Nz)*Dz/2;
plot(F,y,FknifedB,y,'o-r')
axis([-30 6 0 Nz*Dz/2])
%xlabel('Relative Propagation Factor F(dB)'),ylabel('Altitude(m)')
%title(['Ny = 'num2str(Ny) ' Nz = ' num2str(Nz) ' Dx = 'num2str(Dx) '
meters' ' Ht = ' num2str(Ht) ' meters'])
legend('Parabolic','KnifedB')
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APPENDIX C:  A 3D PE MODEL FOR THE MULTIPLE SCREENS 
OF UNIFORM HEIGHTS AND EQUAL SPACING 

 

Below is the MatLab program listing of the 3D parabolic equation model use to 

compute the propagation factors with multiple absorbing screens of uniform heights and 

equal spacing over perfectly flat earth and constant admittance plane.  The operating 

frequency is 1 GHz and 900 MHz. 
%**********************************************************************
% Declaring Contants
%**********************************************************************

hold off;
tic
c=3e8; % Speed of light
f=0.9e9; % Operating frequency
Lamda=c/f; % Wavelength
ko=(2*pi)/Lamda; % Wavenumber
S=400; % Ground conductivity in mS/m
Er=10; % Relative dielectric constant

Dz=Lamda; % Delta Z in meter
Dy=Lamda; % Delta Y in meter
sigmaz=Lamda; % Current source standard deviation

%**********************************************************************
% Input Parameters
%**********************************************************************

Ht=125; % Transmitting antenna height

Hk=20; % Knife edge height
Wk=50; % Knife edge width

NS=120; % Number of screens
Dns=50; % Screen separation
M=50:Dns:Dns*NS; % Location of the screens

D=Dns*(NS+1); % Range from the transmitter
Dx=25; % Incremental range (Dx) in meter

Ny=1024; % Sample size in the y-direction
Nz=1024; % Sample size in the z-direction
%**********************************************************************
% Define range in y-direction and z-direction
%**********************************************************************

ymax=Ny*Dy/2; % maximum range in y-direction
y1=0:Dy:ymax; % First half of y range
y=[y1 zeros(1,Ny/2-1)]; % y array
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zmax = Nz*Dz/2; % Find maximum z range (Zmax)
z1=0:Dz:zmax; % First half of the range of Zmax+1
z=[z1 zeros(1,Nz/2-1)]; % Construct a full z array

%**********************************************************************
% Define Wavenumbers in Spatial Domain
%**********************************************************************

kymax=pi/Dy; % Maximum wavenumber in y-direction
Dky=2*kymax/Ny; % detla ky
ky1=-kymax:Dky:kymax; % Range of ky
ky=[ky1(:,(Ny/2)+1:Ny+1) ky1(:,2:Ny/2)];

kzmax=pi/Dz; % Maximum wavenumber in z-direction
Dkz=2*kzmax/Nz; % detla kz
kz1=-kzmax:Dkz:kzmax; % Range of kz
kz=[kz1(:,(Nz/2)+1:Nz+1) kz1(:,2:Nz/2)];

%**********************************************************************
% Compute Wavenumbers in Frequency Domain, kx
%**********************************************************************

Ky=meshgrid(ky,1:Nz); % Create a NyxNz matrix of ky row-repeat
Kz=meshgrid(kz,1:Ny).'; % Create a NyxNz matrix of kz column-
repeat
kx=sqrt(ko^2-Ky.^2-Kz.^2); % Compute theNy x Nz kx matrix

clear Ky; % Clear matrices Ky and Kz from memory
clear Kz; % To make the algorithm run faster

%**********************************************************************
% Compute reflection coefficient
%**********************************************************************

Erc=Er+i*18*S/(f/1e6); % Complex dielectric
Zs=1/sqrt(Erc); % Impedance
Gamma=(kz-ko*Zs)./(kz+ko*Zs); % Complex reflection coefficient
%gamma=-ones(Nz,Ny); % Setting gamma = -1
gamma=meshgrid(Gamma,1:Ny).'; % Create reflection coefficient matrix

% by column repeating

%**********************************************************************
% Define the Hanning Window
%**********************************************************************

Hya=[]; % An empty vector
for t=0:Ny/2; % Define Ny/2 + 1 points

if (t>=0 & t<=3*Ny/8) % Define first 3Ny/8 +1 points
hy=1;

elseif (t>=3*Ny/8 & t<=Ny/2)% Define next Ny/8 points
hy=(sin(4*pi*t/Ny))^2;

end
Hya=[Hya hy]; % Construct the first half of Hanning

end % window of 1+Ny/2 elements



67 

Yy=fliplr(Hya(:,2:Ny/2)); % Flip left to right of the Hanning
% windows from the

second element to
% Ny/2 element for total of [1x(Ny/2-1)]

HY=[Hya Yy]; % Hanning window in y-direction

Hzb=[]; % An empty vector
for t=0:Nz/2; % Define Nz/2 + 1 points

if (t>=0 & t<=3*Nz/8) % Define first 3Nz/8 +1 points
hz=1;

elseif (t>=3*Nz/8 & t<=Nz/2)% Define next Nz/8 points
hz=(sin(4*pi*t/Nz))^2;

end
Hzb=[Hzb hz]; % Construct the first half of Hanning

end % window of 1+Nz/2 elements

Yz=fliplr(Hzb(:,2:Nz/2)); % Flip left to right of the Hanning
% windows from the second element to
% Nz/2 element for total of [1x(Nz/2-1)]

HZ=[Hzb Yz]'; % Hanning window in z-direction

Hmy=meshgrid(HY,1:Nz); % Row repeat
Hmz=meshgrid(HZ,1:Ny)'; % Column repeat

H3D=(Hmy.*Hmz); % 3D Hanning window

%**********************************************************************
% Gaussian Current Source
%**********************************************************************

f=(1/(sqrt(2*pi)*sigmaz))*exp(-(z-Ht).^2/(2*sigmaz^2));

f_tilda=Dz*fft(f); % Fourier transform of f(z)

%**********************************************************************
% Initial H-field at x=0
%**********************************************************************

g_tilda=exp(-kz.^2*sigmaz^2/2); % initial g tilda
hye0_tilda=g_tilda.*cos(kz*Ht); % Initial hye_tilda(0+,ky,kz) field
hyo0_tilda=-i*g_tilda.*sin(kz*Ht); % Initial hyo_tilda(0+,ky,kz) field

% Initial even H-field, column repeat
Hye0_tilda=meshgrid(hye0_tilda,1:Ny).';

% Initial odd H-field, column repeat
Hyo0_tilda=meshgrid(hyo0_tilda,1:Ny).';

% Include the reflection coefficient
Hy0_tilda=0.5*(1+gamma).*Hye0_tilda+0.5*(1-gamma).*Hyo0_tilda;

Hy_tilda=Hy0_tilda.*H3D;% Hy_tilda(0+,ky,kz) at x=0

Exp2=exp(i*kx*Dx); % Marching range
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%**********************************************************************
% 3D Parabolic Equation Basic Algorithm
%**********************************************************************
C=0; % Setting the counter

for x=0:Dx:D-Dx;
Hy_tilda_Dx=Hy_tilda.*Exp2; % Hy_tilda(Dx,ky,kz)

% ifft2 wrt to ky and kz
Hy=Dkz*Dky*(Ny*Nz*ifft2(Hy_tilda_Dx))/(2*pi)^2;

Hy_H=Hy.*H3D; % Apply the Hamming window in spatial domain

C=C+Dx; % Counter

while M(M==C)
Hy_H(1:round(Hk/Dz),1:round(Wk/Dy/2))=0;
Hy_H(1:round(Hk/Dz),(Ny-round(Wk/Dy/2)):Ny)=0;
break

end

Hyz1=Hy_H(1:Nz/2+1,:); % H-field for z > 0

Hyz0=flipud(Hy_H(2:Nz/2,:)); % H-field for z < 0

Hye=[Hyz1; Hyz0]; % Even H-field

Hyo=[Hyz1; -Hyz0]; % Odd H-field

Hye_tilda=(Dz*Dy)*fft2(Hye); % Take the FFT of the even H~
Hye_tilda_H=Hye_tilda.*H3D; % Apply the Hanning window in freq

Hyo_tilda=(Dz*Dy)*fft2(Hyo); % Take the FFT of the odd H~
Hyo_tilda_H=Hyo_tilda.*H3D; % Apply the Hanning window in freq

% Multiply by the reflection coefficient
Hye_tilda_g=0.5*(1+gamma).*Hye_tilda_H;

% Multiply by the reflection coefficient
Hyo_tilda_g=0.5*(1-gamma).*Hyo_tilda_H;

Hy_tilda1=Hye_tilda_g + Hyo_tilda_g;% Hy_tilda(x,ky,kz)

Hy_tilda=Hy_tilda1.*H3D; % Apply the Hanning window

end
%**********************************************************************
% Compute The Propagation Factor
%**********************************************************************
J=4; % First column final H-field

rho=sqrt(D^2+(J)^2); % Distance from Tx to base Rx
R=sqrt((z(:,1:Nz/2+1)-Ht).^2 + rho^2); % Distance from Tx to Rx

theta=asin(rho./R); % Angle Theta
phi=asin(J/rho); % Angle Phi
g_tilda_fs=exp(-((cos(theta)*ko).^2*sigmaz^2)/2); % Free-space g_tilda

% Free-space H-field
Hyfs=-i*ko*sin(theta)*cos(phi).*g_tilda_fs.*exp(i*ko*R)./(4*pi*R);
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A=Hy_H(1:Nz/2+1,2); % z > 0 of the first column of the final H-field
F=(abs(A./Hyfs.')); % Propagation factor relative to the free-space

save H:\THESIS_2001\MATLAB_CODES\propfact F -ASCII

%**********************************************************************
% Plot results
%**********************************************************************

figure(1)
%Z=linspace(0,3*Nz/8*Dz,513);
Z=(0:Dz:Nz/2*Dz)';
Y=(Z-Hk)/Lamda;
save H:\THESIS_2001\MATLAB_CODES\recantenna Y -ASCII
plot(Y,F)
axis([-30 60 0 1.8 ])
ylabel('Relative Propagation Factor, F'),xlabel('Receiving Antenna in
Wavelegth')
title(['Ny = 'num2str(Ny) ' Nz = ' num2str(Nz) ' Dx = 'num2str(Dx) '
meters' ' Ht = ' num2str(Ht) ' meters'])
grid

toc % Stop stopwatch
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APPENDIX D: A 3D PE MODEL FOR A SINGLE ROUND HILL 
 

Below is the MatLab program listing of the 3D parabolic equation model use to 

compute the field strengths for a single round hill with multiple absorbing screens of 

uniform heights and equal spacing.  These screens represent a row of buildings or houses 

in residential areas of a well built-up city.  The operating frequency is 900 MHz. 
%**********************************************************************
% Declaring Contants
%**********************************************************************

hold off;
tic
c=3e8; % Speed of light
f=0.9e9; % Operating frequency
Lamda=c/f; % Wavelength
ko=(2*pi)/Lamda; % Wavenumber
S=400; % Ground conductivity in mS/m
Er=10; % Relative dielectric constant

Dz=Lamda; % Delta Z in meter
Dy=Lamda; % Delta Y in meter
sigmaz=Lamda; % Current source standard deviation

%**********************************************************************
% Input Parameters
%**********************************************************************
Ht=57; % Transmitting antenna height
Hbs=7; % Receiving antenna height above KE's

Wk=100; % Knife edge width of 25 meter
Dns=50; % Screen separation

Dist=10000; % Final range
xs=-1000:Dns:1000; % Horizontal hill width
ys=sqrt(1e4^2-xs.^2)-(9.95e3);% Equation for circle
xs1=1000+Dns:Dns:Dist+Dns; % Equal heigth and equal distance screen
ys1=zeros(1,(length(xs1))); % Equal heigth screen height
xs2=[xs xs1];
Hk=[ys ys1]; % Knife edge height of meter
Hk(1)=0; % When screen height less than zeros
Hk(length(xs))=0;

NS=length(xs2); % Number of screens
M=Dns:Dns:Dns*(NS); % Location of the screens

D=Dns*(NS); % Range from the transmitter
Dx=50; % Incremental range (Dx) in meter

Ny=1024; % Sample size in the y-direction
Nz=1024; % Sample size in the z-direction
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%**********************************************************************
% Define range in y-direction and z-direction
%**********************************************************************

ymax=Ny*Dy/2; % maximum range in y-direction
y1=0:Dy:ymax; % First half of y range
y=[y1 zeros(1,Ny/2-1)]; % y array

zmax = Nz*Dz/2; % Find maximum z range (Zmax)
z1=0:Dz:zmax; % First half of the range of Zmax+1
z=[z1 zeros(1,Nz/2-1)]; % Construct a full z array

%**********************************************************************
% Define Wavenumbers in Spatial Domain
%**********************************************************************

kymax=pi/Dy; % Maximum wavenumber in y-direction
Dky=2*kymax/Ny; % detla ky
ky1=-kymax:Dky:kymax; % Range of ky
ky=[ky1(:,(Ny/2)+1:Ny+1) ky1(:,2:Ny/2)];

kzmax=pi/Dz; % Maximum wavenumber in z-direction
Dkz=2*kzmax/Nz; % detla kz
kz1=-kzmax:Dkz:kzmax; % Range of kz
kz=[kz1(:,(Nz/2)+1:Nz+1) kz1(:,2:Nz/2)];

%**********************************************************************
% Compute Wavenumbers in Frequency Domain, kx
%**********************************************************************

Ky=meshgrid(ky,1:Nz); % Create a NyxNz matrix of ky row-repeat
Kz=meshgrid(kz,1:Ny).'; % Create a NyxNz matrix of kz column-
repeat
kx=sqrt(ko^2-Ky.^2-Kz.^2); % Compute theNy x Nz kx matrix

clear Ky; % Clear matrices Ky and Kz from memory
clear Kz; % To make the algorithm run faster

%**********************************************************************
% Compute reflection coefficient
%**********************************************************************

Erc=Er+i*18*S/(f/1e6); % Complex dielectric
Zs=1/sqrt(Erc); % Impedance
Gamma=(kz-ko*Zs)./(kz+ko*Zs); % Complex reflection coefficient
%gamma=-ones(Nz,Ny); % Setting gamma = -1
gamma=meshgrid(Gamma,1:Ny).'; % Create reflection coefficient matrix

% by column repeating

%**********************************************************************
% Define the Hanning Window
%**********************************************************************

Hya=[]; % An empty vector
for t=0:Ny/2; % Define Ny/2 + 1 points
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if (t>=0 & t<=3*Ny/8) % Define first 3Ny/8 +1 points
hy=1;

elseif (t>=3*Ny/8 & t<=Ny/2)% Define next Ny/8 points
hy=(sin(4*pi*t/Ny))^2;

end
Hya=[Hya hy]; % Construct the first half of Hanning

end % window of 1+Ny/2 elements

Yy=fliplr(Hya(:,2:Ny/2)); % Flip left to right of the Hanning
% windows from the

second element to
% Ny/2 element for total of [1x(Ny/2-1)]

HY=[Hya Yy]; % Hanning window in y-direction

Hzb=[]; % An empty vector
for t=0:Nz/2; % Define Nz/2 + 1 points

if (t>=0 & t<=3*Nz/8) % Define first 3Nz/8 +1 points
hz=1;

elseif (t>=3*Nz/8 & t<=Nz/2)% Define next Nz/8 points
hz=(sin(4*pi*t/Nz))^2;

end
Hzb=[Hzb hz]; % Construct the first half of Hanning

end % window of 1+Nz/2 elements

Yz=fliplr(Hzb(:,2:Nz/2)); % Flip left to right of the Hanning
% windows from the second element to
% Nz/2 element for total of [1x(Nz/2-1)]

HZ=[Hzb Yz]'; % Hanning window in z-direction

Hmy=meshgrid(HY,1:Nz); % Row repeat
Hmz=meshgrid(HZ,1:Ny)'; % Column repeat

H3D=(Hmy.*Hmz); % 3D Hanning window

%**********************************************************************
% Gaussian Current Source
%**********************************************************************

f=(1/(sqrt(2*pi)*sigmaz))*exp(-(z-Ht).^2/(2*sigmaz^2));

f_tilda=Dz*fft(f); % Fourier transform of f(z)

%**********************************************************************
% Initial H-field at x=0
%**********************************************************************

g_tilda=exp(-kz.^2*sigmaz^2/2); % initial g tilda
hye0_tilda=g_tilda.*cos(kz*Ht); % Initial hye_tilda(0+,ky,kz) field
hyo0_tilda=-i*g_tilda.*sin(kz*Ht); % Initial hyo_tilda(0+,ky,kz) field

% Initial even H-field, column repeat
Hye0_tilda=meshgrid(hye0_tilda,1:Ny).';

% Initial odd H-field, column repeat
Hyo0_tilda=meshgrid(hyo0_tilda,1:Ny).';

% Include the reflection coefficient
Hy0_tilda=0.5*(1+gamma).*Hye0_tilda+0.5*(1-gamma).*Hyo0_tilda;

Hy_tilda=Hy0_tilda.*H3D;% Hy_tilda(0+,ky,kz) at x=0
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Exp2=exp(i*kx*Dx); % Marching range

%*********************************************************************
% 3D Parabolic Equation Algorithm
%*********************************************************************
C=0; % Setting the range counter
c=0; % Setting the index counter

for x=0:Dx:D-Dx; % Define the total steps based on Dx and D
c=c+1; % Starting the index counter

Hy_tilda_Dx=Hy_tilda.*Exp2; % Hy_tilda(Dx,ky,kz)
% ifft2 wrt to ky and kz

Hy=Dkz*Dky*(Ny*Nz*ifft2(Hy_tilda_Dx))/(2*pi)^2;

Hy_H=Hy.*H3D; % Apply the Hamming window in spatial domain

%*******************************************************************
% Insert Screens (Buildings)
%*******************************************************************
C=C+Dx; % Range Counter

while M(M==C) % If location of screen = marching distance
Hy_H(1:round((Hk(c)+Hbs)/Dz),1:round(Wk/Dy/2))=0;
Hy_H(1:round((Hk(c)+Hbs)/Dz),(Ny-round(Wk/Dy/2)):Ny)=0;
break

end

%*******************************************************************
% Field Strength Convert from 3D to 2D
%*******************************************************************
% Measure the field strength at the top of each screen
%*******************************************************************
J=4; % First column final H-field

rho=sqrt(C^2+(J)^2); % Distance from transmitter to the receiver
R=sqrt(((Hk(c)+Hbs)-Ht)^2 + rho^2);

% Distance from transmitter to receiver

theta=asin(rho/R); % Angle Theta measured relative to the z-axis
phi=asin(J/rho); % Angle Phi measured relative to the x-axis

% Free-space g_tilda
g_tilda_fs=exp(-((cos(theta)*ko).^2*sigmaz^2)/2);

% Free-space H-field
Hyfs=-i*ko*sin(theta)*cos(phi).*g_tilda_fs.*exp(i*ko*R)./(4*pi*R);

% z > 0 of the first column of the final H-field
A=Hy_H(round((Hk(c)+Hbs)/Dz)+1,4);

Frel(c)=20*log10(abs(A/Hyfs)); % Relative Prop Factor
% Convert propagation factor (F) to E-field by multiplying it by
% 1/sqrt(ko*R)
Field(c)=20*log10(abs(A/Hyfs)/sqrt(ko*R)); % E-Field strength
FFreeSpace(c)=20*log10(1/sqrt(ko*R)); % 2D free-space pathloss
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%*******************************************************************

Hyz1=Hy_H(1:Nz/2+1,:); % H-field for z > 0

Hyz0=flipud(Hy_H(2:Nz/2,:)); % H-field for z < 0

Hye=[Hyz1; Hyz0]; % Even H-field

Hyo=[Hyz1; -Hyz0]; % Odd H-field

Hye_tilda=(Dz*Dy)*fft2(Hye); % Take the FFT of the even H-tilda
Hye_tilda_H=Hye_tilda.*H3D; % the Hanning window in freq domain

Hyo_tilda=(Dz*Dy)*fft2(Hyo); % Take the FFT of the odd H-tilda
Hyo_tilda_H=Hyo_tilda.*H3D; % The Hanning window in freq domain

% Apply reflection coefficient to the even field
Hye_tilda_g=0.5*(1+gamma).*Hye_tilda_H;

% Apply reflection coefficiet to the odd field
Hyo_tilda_g=0.5*(1-gamma).*Hyo_tilda_H;

Hy_tilda1=Hye_tilda_g + Hyo_tilda_g; % Hy_tilda(x,ky,kz)

Hy_tilda=Hy_tilda1.*H3D; % The Hanning window in freq domain

end

save H:\THESIS_2001\MATLAB_CODES\FieldSt100 Field -ASCII
save H:\THESIS_2001\MATLAB_CODES\Free_Space FFreeSpace -ASCII

%**********************************************************************
% Plot Results
%**********************************************************************
figure(1)
stem(xs2,Hk+Hbs),grid
xlabel('Screen Placement (m)')
ylabel('Screen Height (m)')

figure(2)
Z=(-1000:Dns:Dist+Dns)';
plot(Z,Frel),grid
axis([-1000 5000 -80 10])
ylabel('Relative Field Strength (dB)')
xlabel('Screen Position (m)')
title([' Wk = ' num2str(Wk) ' meters' ' Dx = 'num2str(Dx) ' meters' '
Ht = ' num2str(Ht) ' meters'])

figure(3)
Z=(-1000:Dns:Dist+Dns)';
save H:\THESIS_2001\MATLAB_CODES\RHPlacement Z -ASCII
plot(Z,Field,Z,FFreeSpace),grid
axis([-1000 5000 -120 -30])
ylabel('Field Strength (dB)')
xlabel('Screen Position (m)')
title([' Wk = ' num2str(Wk) ' meters' ' Dx = 'num2str(Dx) ' meters'])

toc % Stop stopwatch
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APPENDIX E: A 3D PE MODEL FOR TWO HILLS OF 
SINUSOIDAL SHAPE 

 

Below is the MatLab program listing of the 3D parabolic equation model use to 

compute the field strengths for two sinusoidal hills with multiple absorbing screens of 

uniform heights and equal spacing.  These screens represent a row of buildings or houses 

in residential areas of a well built-up city.  The operating frequency is 900 MHz. 
%**********************************************************************
% Declaring Contants
%**********************************************************************

hold off;
tic
c=3e8; % Speed of light
f=0.9e9; % Operating frequency
Lamda=c/f; % Wavelength
ko=(2*pi)/Lamda; % Wavenumber
S=400; % Ground conductivity in mS/m
Er=10; % Relative dielectric constant

Dz=Lamda; % Delta Z in meter
Dy=Lamda; % Delta Y in meter
sigmaz=Lamda; % Current source standard deviation

%**********************************************************************
% Input Parameters
%**********************************************************************
Ht=57; % Transmitting antenna height
Hbs=7; % Receiving antenna height above KE's

Wk=100; % Knife edge width of 25 meter
Dns=50; % Screen separation

xs=-1500:Dns:4500+Dns; % Horizontal hill width
Hk=Hbs+25+25*cos(2*pi*xs/3000); % Equal space screen height

NS=length(xs); % Number of screens
M=Dns:Dns:Dns*(NS); % Location of the screens

D=Dns*(NS); % Range from the transmitter
Dx=50; % Incremental range (Dx) in meter

Ny=1024; % Sample size in the y-direction
Nz=1024; % Sample size in the z-direction

%**********************************************************************
% Define range in y-direction and z-direction
%**********************************************************************

ymax=Ny*Dy/2; % maximum range in y-direction
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y1=0:Dy:ymax; % First half of y range
y=[y1 zeros(1,Ny/2-1)]; % y array

zmax = Nz*Dz/2; % Find maximum z range (Zmax)
z1=0:Dz:zmax; % First half of the range of Zmax+1
z=[z1 zeros(1,Nz/2-1)]; % Construct a full z array

%**********************************************************************
% Define Wavenumbers in Spatial Domain
%**********************************************************************

kymax=pi/Dy; % Maximum wavenumber in y-direction
Dky=2*kymax/Ny; % detla ky
ky1=-kymax:Dky:kymax; % Range of ky
ky=[ky1(:,(Ny/2)+1:Ny+1) ky1(:,2:Ny/2)];

kzmax=pi/Dz; % Maximum wavenumber in z-direction
Dkz=2*kzmax/Nz; % detla kz
kz1=-kzmax:Dkz:kzmax; % Range of kz
kz=[kz1(:,(Nz/2)+1:Nz+1) kz1(:,2:Nz/2)];

%**********************************************************************
% Compute Wavenumbers in Frequency Domain, kx
%**********************************************************************

Ky=meshgrid(ky,1:Nz); % Create a NyxNz matrix of ky row-repeat
Kz=meshgrid(kz,1:Ny).'; % Create a NyxNz matrix of kz column-
repeat
kx=sqrt(ko^2-Ky.^2-Kz.^2); % Compute theNy x Nz kx matrix

clear Ky; % Clear matrices Ky and Kz from memory
clear Kz; % To make the algorithm run faster

%**********************************************************************
% Compute reflection coefficient
%**********************************************************************

Erc=Er+i*18*S/(f/1e6); % Complex dielectric
Zs=1/sqrt(Erc); % Impedance
Gamma=(kz-ko*Zs)./(kz+ko*Zs); % Complex reflection coefficient
%gamma=-ones(Nz,Ny); % Setting gamma = -1
gamma=meshgrid(Gamma,1:Ny).'; % Create reflection coefficient matrix

% by column repeating

%**********************************************************************
% Define the Hanning Window
%**********************************************************************

Hya=[]; % An empty vector
for t=0:Ny/2; % Define Ny/2 + 1 points

if (t>=0 & t<=3*Ny/8) % Define first 3Ny/8 +1 points
hy=1;

elseif (t>=3*Ny/8 & t<=Ny/2)% Define next Ny/8 points
hy=(sin(4*pi*t/Ny))^2;

end
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Hya=[Hya hy]; % Construct the first half of Hanning
end % window of 1+Ny/2 elements

Yy=fliplr(Hya(:,2:Ny/2)); % Flip left to right of the Hanning
% windows from the

second element to
% Ny/2 element for total of [1x(Ny/2-1)]

HY=[Hya Yy]; % Hanning window in y-direction

Hzb=[]; % An empty vector
for t=0:Nz/2; % Define Nz/2 + 1 points

if (t>=0 & t<=3*Nz/8) % Define first 3Nz/8 +1 points
hz=1;

elseif (t>=3*Nz/8 & t<=Nz/2)% Define next Nz/8 points
hz=(sin(4*pi*t/Nz))^2;

end
Hzb=[Hzb hz]; % Construct the first half of Hanning

end % window of 1+Nz/2 elements

Yz=fliplr(Hzb(:,2:Nz/2)); % Flip left to right of the Hanning
% windows from the second element to
% Nz/2 element for total of [1x(Nz/2-1)]

HZ=[Hzb Yz]'; % Hanning window in z-direction

Hmy=meshgrid(HY,1:Nz); % Row repeat
Hmz=meshgrid(HZ,1:Ny)'; % Column repeat

H3D=(Hmy.*Hmz); % 3D Hanning window

%**********************************************************************
% Gaussian Current Source
%**********************************************************************

f=(1/(sqrt(2*pi)*sigmaz))*exp(-(z-Ht).^2/(2*sigmaz^2));

f_tilda=Dz*fft(f); % Fourier transform of f(z)

%**********************************************************************
% Initial H-field at x=0
%**********************************************************************

g_tilda=exp(-kz.^2*sigmaz^2/2); % initial g tilda
hye0_tilda=g_tilda.*cos(kz*Ht); % Initial hye_tilda(0+,ky,kz) field
hyo0_tilda=-i*g_tilda.*sin(kz*Ht); % Initial hyo_tilda(0+,ky,kz) field

% Initial even H-field, column repeat
Hye0_tilda=meshgrid(hye0_tilda,1:Ny).';

% Initial odd H-field, column repeat
Hyo0_tilda=meshgrid(hyo0_tilda,1:Ny).';

% Include the reflection coefficient
Hy0_tilda=0.5*(1+gamma).*Hye0_tilda+0.5*(1-gamma).*Hyo0_tilda;

Hy_tilda=Hy0_tilda.*H3D;% Hy_tilda(0+,ky,kz) at x=0

Exp2=exp(i*kx*Dx); % Marching range
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%**********************************************************************
% 3D PE Basic Algorithm
%**********************************************************************
C=0; % Setting the range counter
c=0; % Setting the index counter

for x=0:Dx:D-Dx; % Define the total steps based on Dx and
D

c=c+1; % Starting the index counter

Hy_tilda_Dx=Hy_tilda.*Exp2;% Hy_tilda(Dx,ky,kz)
% ifft2 wrt to ky and kz

Hy=Dkz*Dky*(Ny*Nz*ifft2(Hy_tilda_Dx))/(2*pi)^2;

Hy_H=Hy.*H3D; % Apply the Hamming window in spatial domain

%**********************************************************************
% Insert Screens (Buildings)
%**********************************************************************

C=C+Dx; % Range Counter

while M(M==C) % If location of screen = marching distance
% only work if Dx = Dns; otherwise rewrite
Hy_H(1:round((Hk(c))/Dz),1:round(Wk/Dy/2))=0;

Hy_H(1:round((Hk(c))/Dz),(Ny-round(Wk/Dy/2)):Ny)=0;
break

end

%**********************************************************************
% Field Strength Convert from 3D to 2D
%**********************************************************************

J=4; % First column final H-field

rho=sqrt(C^2+(J)^2); % Distance from Tx to Base Rx
R=sqrt(((Hk(c))-Ht)^2 + rho^2); % Distance from Tx to Rx
theta=asin(rho/R); % Angle Theta
phi=asin(J/rho); % Angle Phi

% Free-space g_tilda
g_tilda_fs=exp(-((cos(theta)*ko).^2*sigmaz^2)/2);

% Free-space H-field
Hyfs=-i*ko*sin(theta)*cos(phi).*g_tilda_fs.*exp(i*ko*R)./(4*pi*R);

% z > 0 of the first column of the final H-field
A=Hy_H(round((Hk(c))/Dz)+1,4);

Frel(c)=20*log10(abs(A/Hyfs)); % Field strength
Field(c)=20*log10(abs(A/Hyfs)/sqrt(ko*R)); % Field strength

FFreeSpace(c)=20*log10(abs(Hyfs)/sqrt(ko*R));

%**********************************************************************
Hyz1=Hy_H(1:Nz/2+1,:); % H-field for z > 0

Hyz0=flipud(Hy_H(2:Nz/2,:)); % H-field for z < 0

Hye=[Hyz1; Hyz0]; % Even H-field
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Hyo=[Hyz1; -Hyz0]; % Odd H-field

Hye_tilda=(Dz*Dy)*fft2(Hye); % Take the FFT of the even H-tilda
Hye_tilda_H=Hye_tilda.*H3D; % the Hanning window in freq domain

Hyo_tilda=(Dz*Dy)*fft2(Hyo); % Take the FFT of the odd H-tilda
Hyo_tilda_H=Hyo_tilda.*H3D; % The Hanning window in freq domain

% Apply reflection coefficient to the even field
Hye_tilda_g=0.5*(1+gamma).*Hye_tilda_H;

% Apply reflection coefficiet to the odd field
Hyo_tilda_g=0.5*(1-gamma).*Hyo_tilda_H;

Hy_tilda1=Hye_tilda_g + Hyo_tilda_g; % Hy_tilda(x,ky,kz)

Hy_tilda=Hy_tilda1.*H3D; % The Hanning window in freq domain

end

save H:\THESIS_2001\Base_Line_Codes\TwoHField100 Field -ASCII

%**********************************************************************
% Plot Results
%**********************************************************************

figure(1)
stem(xs,Hk),grid
axis([-2000 5000 0 60])
xlabel('Screen Placement (m)')
ylabel('Screen Height (m)')

figure(2)
Z=(-1500:Dns:4500+Dns)';
plot(Z,Frel),grid
axis([-2000 5000 -80 10])
ylabel('Relative Field Strength (dB)')
xlabel('Screen Position (m)')
title([' Wk = ' num2str(Wk) ' meters' ' Dx = 'num2str(Dx) ' meters' '
Ht = ' num2str(Ht) ' meters'])

figure(3)
Z=(-1500:Dns:4500+Dns)';
plot(Z,Field),grid
axis([-2000 5000 -120 -30])
ylabel('Field Strength (dB)')
xlabel('Screen Position (m)')
title([' Wk = ' num2str(Wk) ' meters' ' Dx = 'num2str(Dx) ' meters'])

%legend('Parabolic','KnifedB')
%saveas(gcf,'3D_PE_4RAY.fig');
%saveas(gcf,'3D_PE_4RAY.bmp');

toc % Stop stopwatch
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